

Línea 7: Sostenibilidad y Economía Verde

Producto 7.1.1. Análisis y categorización de la sostenibilidad de paisajes agropecuarios de la Orinoquia realizado a partir de estudios de caso regionales

AUTORES

Clarita Bustamante, Johan Manuel Redondo & Jeimy Andrea García

PRODUCTO POA 2018 Resolución 0130 de 2018

Contenido

Producto 7.1.1. Documento con análisis y categorización de la sostenibilidad de pa	aisajes agropecuarios de
la Orinoquia realizado a partir de estudios de caso regionales	1
Resumen ejecutivo	1
Introducción	8
1. Estructura conceptual de análisis	8
1.1.Revisión de literatura1.2. Marco Conceptual2. Análisis de Sostenibilidad	8 13 18
2.1 Principio Multifuncionalidad2.1.1. Indicador Heterogeneidad	20 20
2.2. Principio Productividad2.2.1. Indicador Oferta de Servicios ecosistémicos	39 39
2.2.2. Indicador Redundancia	43
2.3 Principio Bienestar2.3.1. Indicador Integridad Ecológica	45 45
2.3.2. Indicador Probabilidad de Colapso	46
2.4 Análisis de sostenibilidad Aproximación 1	47 47
Aproximación 2	51
2.4.1 Representación gráfica del análisis	73

Lista de tablas

Tabla 1 Conceptos representativos de la revisión documental	10
Tabla 2 Ficha meotodológica de Indicador Heterogeneidad	20
Tabla 3 Análisis del Indicador de Heterogeneidad, Aproximación 1	
Tabla 4 Estructura Jerárquica del Análisis fisiográfico	24
Tabla 5 Categorías generadas a partir de la Cobertura de la Tierra (20120-2012) en la Orinoquía:	25
Tabla 6 Identificación y codificación de combinaciones de coberturas existentes en cada predio (Orir	noquia).
	27
Tabla 7 Categorización tipo 1	
Tabla 8 Sistemas productivos categorización 3	
Tabla 9 Cálculo Heterogeneidad a escala municipal	32
Tabla 10 Cálculo Heterogeneidad a escala Subzona Hidrográfica	37
Tabla 11 Aproximación 1	47
Tabla 12 Aproximación 2	
Tabla 13 Cambios entre aproximaciones	5⊿
Tabla 14 Categorías de sostenibilidad de la aproximación inicial de sistemas de producción, por S	Subzona
hidrográfica como unidad de análisis	55
Tabla 15 Indicadores de los principios	74

Lista de figuras

Figura 1 Principios e Indicadores de sostenibilidad	2
Figura 2 Grafos tipo red de principios e indicadores de un paisaje agropecuario sostenible	3
Figura 3 Procedimiento para el cálculo de sostenibilidad	4
Figura 4 Tablero de control de la trama en el paisaje de los servicios ecosistémicos seleccionados p	para
la evaluación de la sostenibilidad en paisajes agropecuarios	5
Figura 5 Modelamiento de un proceso de producción ganadero	6
Figura 6 Revistas consultadas	9
Figura 7 Año de publicación documentos consultados	9
Figura 8 Categoría documentos analizados	10
Figura 9 Expresiones emergentes sostenibilidad	. 15
Figura 10 Principios e Indicadores de sostenibilidad	. 16
Figura 11 Adaptación de Moraine, 2017	
Figura 12 Análisis de sostenibilidad	. 19
Figura 13 Categoría 1 Cobertura de la Tierra y Predios Región Orinoquía	. 25
Figura 14 Categorización tipo 1	. 28
Figura 15 Categorización tipo 2 de Sistemas Productivos	. 30
Figura 16 Categorización tipo 3	
Figura 17 Metodología y variables utilizadas para evaluar, calificar y categorizar los SE que prest	ta la
macrocuenca Orinoco, relacionados con el recurso hídrico (fuente este estudio)	. 40
Figura 18 Representación del servicio ecosistémico "provisión de agua" mediante niveles, flujo	os y
variables auxiliares relacionadas con su dinámica	. 41
Figura 19 Análisis de riesgo	
Figura 20 Mapa de sostenibilidad para las cuencas aproximación 1	
Figura 21 Mapa de sostenibilidad para las cuencas aproximación 2	. 54
Figura 22 Modelo conceptual y estructura de representación	
Figura 23 Procedimiento para el cálculo de sostenibilidad	
Figura 24 Mapas de calor y gráfico de radar	76
Figura 25 Gráfico de telaraña conformado con los diferentes indicadores de sostenibilidad	
Figura 26 Mapa de sostenibilidad para las cuencas	
Figura 27 Gráfico de telaraña para representar sostenibilidad	
Figura 28 Mapas que representan las variables insumo para cálculo de la sostenibilidad	
Figura 29 Mapas de distribución de las cuencas en la Orinoquía	
Figura 30 Imagen completa de la pantalla de cálculo de sostenibilidad	81

Producto 7.1.1. Documento con análisis y categorización de la sostenibilidad de paisajes agropecuarios de la Orinoquia realizado a partir de estudios de caso regionales

Resumen

Para el cumplimiento de la meta 7.1: Comprensión del papel de la bioeconomía y los negocios verdes con énfasis en uso agropecuario y turismo de naturaleza incorporado al análisis de la sostenibilidad de paisajes agropecuarios de la Orinoquia, la línea de Sostenibilidad y Economía verde presenta en este documento los resultados del trabajo realizado en el año, haciendo énfasis en: a) La definición y evaluación de sostenibilidad de paisajes agropecuarios a partir de análisis sistémicos y b) La elaboración de un documento de referencia, discusión y reflexión en torno al papel de la bioeconomía y los negocios verdes en el marco de los estudios transdisciplinares de análisis integral de los territorios, con énfasis en uso agropecuario y turismo de naturaleza.

Palabras clave: Sostenibilidad, paisajes agropecuarios, estudios de caso regionales

Abstract

For the fulfillment of goal 7.1: Understanding the role of the bioeconomy and green businesses with emphasis on agricultural use and nature tourism, included in the analysis of the sustainability of agricultural landscapes of the Orinoquia, the research line on Sustainability and Green Economy illustrates, in this document, the results of the work carried out during this year. The document highlights: a) The definition and assessment of the sustainability of agricultural landscapes based on systemic analysis; and b) The elaboration of a document with the main discussions and thoughts regarding the role of bioeconomy. and green businesses in the framework of transdisciplinary studies which aim to give a comprehensive analysis of the territories, with emphasis on agricultural and natural tourism.

Keywords: Sustainability, agricultural landscapes, regional case studies

CATALOGACIÓN DE LA FUENTE

Bustamante Z., Clarita, Redondo, Johan Manuel & García, Jeimy.

Análisis y categorización de la sostenibilidad de paisajes agropecuarios de la Orinoquia realizado a partir de estudios de caso regionales - Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2018.

75 p.: il.; 28 x 21.5 cm. + 1 CD ROM

Incluye tablas, figuras, mapas, bibliografía compartida (6p.)

2. Informes técnicos. - 8. Estudio de casos. I. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt II. Considerations for the development of an information policy in relation to the Final Technical Report.

Catalogación en la fuente - Biblioteca Instituto Humboldt -

Cómo citar este documento:

Bustamante Z., Clarita, Redondo, Johan Manuel & García, Jeimy. (2018). Análisis y categorización de la sostenibilidad de paisajes agropecuarios de la Orinoquia realizado a partir de estudios de caso regionales. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Resumen ejecutivo

Los resultados del trabajo presentado a continuación se centra en: a) La definición y evaluación de sostenibilidad de paisajes agropecuarios con análisis sistémicos a partir de estudios regionales de caso generados por el Instituto Humboldt y b) La elaboración de un documento de referencia, discusión y reflexión en torno al papel de la bioeconomía y los negocios verdes en el marco de los estudios transdisciplinares de análisis integral de los territorios, como el análisis de sostenibilidad, con énfasis en uso agropecuario y turismo de naturaleza.

Los ejercicios de análisis matemático y modelación de sistemas complejos asociados al análisis de sostenibilidad, se llevaron a cabo en conjunto con la unidad especializada "Laboratorio de Modelamiento, Simulación y Análisis de Sistemas Socioecológicos" del Instituto Humboldt.

 a) En relación a la evaluación de sostenibilidad, se realizó un ejercicio conceptual y metodológico en el que se identificó, en primera instancia, el estado del arte en relación a los abordajes conceptuales, metodológicos, la definición de principios, criterios e indicadores.

La metodología aplicada se desarrolló dentro del programa de Ciencias Sociales y Saberes de la Biodiversidad bajo la denominación de "Expresiones Emergentes del Paisaje", con la que se pretende capturar la trama multidimensional del paisaje y establecer indicadores, dando insumos para la toma de decisiones sobre la biodiversidad y los servicios ecosistémicos.

Para este análisis los "Paisajes Sostenibles" se definieron como *Arreglos socioambientales* relacionales, dinámicos y abiertos, que sostienen la vida en toda su diversidad. Dicha definición conduce a la necesaria interpretación de los paisajes como Sistemas Complejos Adaptativos; por lo tanto, no deberían ser considerados a partir de un único indicador sintético de tipo ambiental, social o económico obtenido del arreglo matemático de datos representativos del paisaje.

El análisis de la sostenibilidad como expresión emergente del paisaje básicamente considera la manera en la que se encuentran entretejidos los atributos del paisaje denotando una hipótesis de su estructura que permite analizar en tiempo y espacio su comportamiento en relación a tres principios de sostenibilidad: Multifuncionalidad, entendida como la capacidad de un paisaje para mantener simultáneamente múltiples beneficios para la sociedad a partir de la interacción de sus ecosistemas y el suministro conjunto de múltiples servicios ecosistémicos (Mastrangelo et al., 2014), la Productividad medida en producción de biomasa a partir de la fotosíntesis (Zheng, Fu, & Feng, 2016a) y rendimiento agronómico como las formas en que los organismos interactúan entre sí y con sus ambientes abióticos determinando tanto la capacidad productiva del ecosistema agrícola como la proporción de productividad ecológica que puede ser cosechada como productos vegetales o animales (Robertson & Swinton, 2005) y Bienestar como un estado dependiente del contexto y la

situación, que comprende material básico para el buen vivir, la libertad y las opciones, la salud, las buenas relaciones sociales y la seguridad (*Millennium Ecosystem Assessment*, 2005), así como la condición funcional de los ecosistemas, vista desde las sinergias a esta escala.

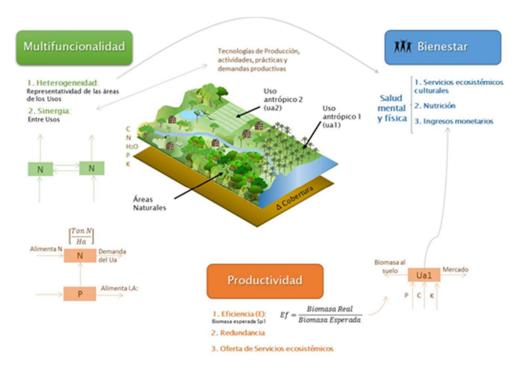


Figura 1 Principios e Indicadores de sostenibilidad

A su vez, un indicador se expresa dependiendo de una o más condiciones, que son llamadas criterios. Sus representaciones se hacen a través de grafos tipo red como se muestra en la Figura 3.

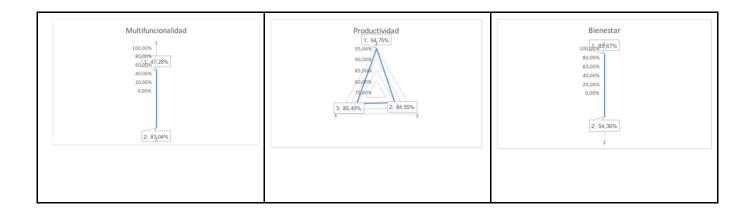


Figura 2 Grafos tipo red de principios e indicadores de un paisaje agropecuario sostenible.

En el caso en el que los indicadores no se encuentren en los intervalos donde se espera, se analizan intervenciones posibles y se evalúa su viabilidad, entendiéndose que cada intervención no solo transforma el indicador que se espera, sino que también lo hace sobre los demás, porque en el paisaje "todo está tejido junto". De este modo, la metodología de análisis del paisaje "expresiones emergentes" no solo permite el diagnóstico de las situaciones actuales, sino que también permite el estudio de alternativas, en el contexto de las posibles transiciones que un paisaje podría tener.

Para la **implementación** y la aplicación de los conceptos y metodologías de análisis de sostenibilidad se llevaron a cabo los siguientes ejercicios:

i) Estudio y categorización de la sostenibilidad de paisajes agropecuarios de la Orinoquia a partir de estudios de caso regionales: Se generó una definición de las condiciones de sostenibilidad/resiliencia actual para usos agropecuarios en la Orinoquia colombiana a partir de la representación de los principios mediante diferentes atributos que componen un conjunto de indicadores.

Para el modelo se utilizaron los siguientes indicadores, tomando como referencia la cartografía tanto del "Plan Estratégico de la Macrocuenca del Orinoco", como del estudio "Identificación de áreas prioritarias y aproximaciones de conservación y manejo del territorio en las zonas operativas de Ecopetrol" - Planeación Ambiental para la conservación de la biodiversidad en las áreas operativas de Ecopetrol (González M.F.et al Instituto Humboldt Ecopetrol 2015): Heterogeneidad (que se asocia con Multifuncionalidad), Oferta de servicios ecosistémicos (que se asocia con Productividad), Riesgo de pérdida de servicios eco sistémicos (como proxy de Productividad-Redundancia), Integridad ecológica (que se asocia con Bienestar Ecológico), Probabilidad de colapso (que se asocia con Bienestar Ecológico).

Cada mapa contiene un indicador, con los que luego se genera el nuevo mapa de sostenibilidad para las cuencas; este mapa se calcula usando álgebra de mapas.

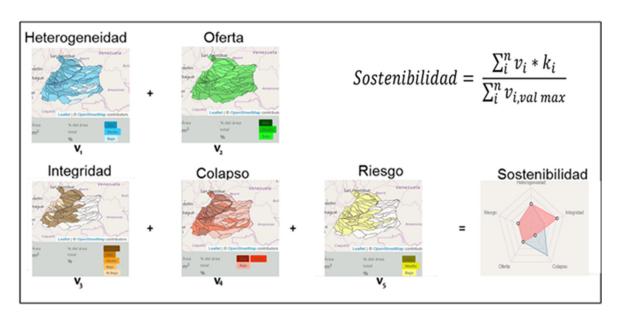


Figura 3 Procedimiento para el cálculo de sostenibilidad.

ii) De desarrolló el modelo para la evaluación del impacto de la ganadería sobre servicios ecosistémicos en la Orinoquía, a través de la dinámica de sistemas, a partir del conocimiento de las múltiples interacciones entre los elementos que conforman estos agroecosistemas, lo cual constituye un factor estratégico para la gestión eficaz de las actividades que en ellos se realizan, propendiendo por el aseguramiento de los servicios ecosistémicos.

El modelo se construyó bajo la metodología de dinámica de sistemas, utilizando los principales componentes: flujos, niveles, retrasos, retroalimentación, entre otros. Hecha la tipificación de la ganadería bovina en la zona de estudio, se construyeron los modelos que permiten evaluar el efecto de la actividad agropecuaria sobre los servicios ecosistémicos de provisión de agua, fijación de carbono y ciclaje de nutrientes (N-P). Con los modelos construidos y validados se analizaron los principios de multifuncionalidad, productividad y bienestar, claves para el análisis de sostenibilidad de los agroecosistemas ganaderos de la Orinoquia.

Para la representación de la trama en el paisaje de, por ejemplo, los servicios ecosistémicos, se han tomado como servicios la oferta de agua, el carbono orgánico, el nitrógeno y el fósforo soluble. La técnica de modelado es la dinámica de sistemas que da lugar a un sistema de ecuaciones diferenciales ordinarias no lineales de primer orden. Esta técnica de modelamiento de sistemas permite, por ejemplo, la elaboración de tableros de control, en los que se pueden realizar simulaciones de los sistemas socioecológicos representados y experimentar comportamientos por la variación de los parámetros del sistema. A su vez, como se mencionó hablando de gestión del conocimiento, permiten

la identificación de los datos que deben ser monitoreados para alimentar los modelos, conocer estados actuales y evaluar estados futuros del sistema.

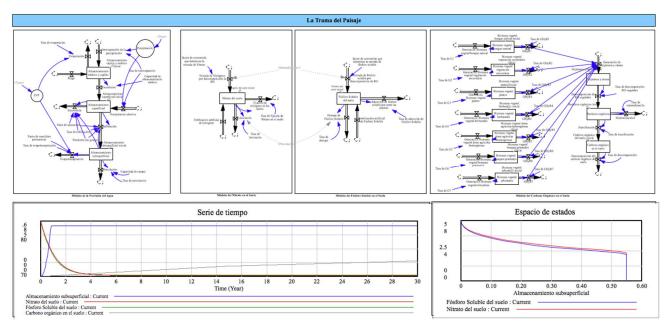


Figura 4 Tablero de control de la trama en el paisaje de los servicios ecosistémicos seleccionados para la evaluación de la sostenibilidad en paisajes agropecuarios.

Se incluyó la información de un sistema de producción específico de ganadería sobre la trama del paisaje ya modelada en el trabajo realizado por el investigador postdoctoral Raúl Molina. Una muestra del modelo del proceso productivo se presenta en la figura 5.

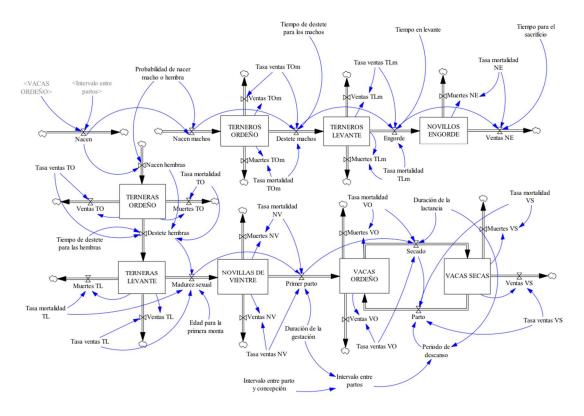


Figura 5 Modelamiento de un proceso de producción ganadero

b) De igual forma, basados en la necesidad de abordar la conceptualización sobre crecimiento verde, economía verde, bioeconomía y negocios verdes como un aspecto estratégico en la gestión de la biodiversidad y de la sostenibilidad, se generó un análisis del papel de la bioeconomía y los negocios verdes en el marco de los estudios transdisciplinares de análisis integral de los territorios (sostenibilidad), con énfasis en uso agropecuario y turismo de naturaleza, en donde se expone el desarrollo de las narrativas esos enfoques de la economía y una breve aproximación a la economía naranja.

Se presentaron algunos temas relevantes del debate crítico que están ausentes o marginalizados en estos discursos, concluyendo que la creación de narrativas atadas a lo ambiental, en general no son más que formas de instrumentalización de conceptos que inicialmente, se lograron involucrar en el debate público global sobre los intereses y objetivos de conservación y desarrollo, sin embargo a medida que proliferan las políticas desde lo global a lo nacional suelen permearse de enfoques que se alejan de los intereses y objetivos primarios y se concentran en los viejos paradigmas de mercado y de poder.

Se evidencia cómo, de estos procesos no escapa la bioeconomía como una narrativa multilateral, y en menor medida los negocios verdes que se han reducido a ámbitos nacionales. La bioeconomía por

ejemplo predomina en su enfoque biotecnológico, aunque existe la posibilidad de que discurra hacia enfoques de biorecursos y preferiblemente hacia su visión bioecológica, abierta a la inclusión de las comunidades, el diálogo de saberes, la transdisciplinariedad, la identidad territorial aspectos que permita la comprensión amplia acerca de cuáles son las sendas de desarrollo que buscan las personas y a partir de esto fortalecer las iniciativas que finalmente pueden derivar en los negocios verdes.

Se abordó también cómo las nociones de bioeconomía y negocios verdes son plasmadas en las políticas públicas de la Orinoquia, en específico en las estrategias agropecuarias y de turismo proyectadas para la región y se hacen algunas consideraciones sobre la sostenibilidad respecto esas estrategias. Se plantearon lineamientos para la construcción del turismo desde lo local como una forma de permitir la distribución de sus beneficios, esto basado en literatura económica sobre la pobreza y los efectos distributivos del turismo. Finalmente, se trataron algunas ideas sobre la economía de las transiciones hacia la sostenibilidad en especial desde la ecología política y economía política, planteando como, la economía de las transiciones:

- a) No debe verse solamente a través de sectores o subsectores de la producción, o prácticas para hacer las cosas "sostenibles", sino que debe ser el conjunto de políticas, acciones y estrategias para la búsqueda de alternativas al modelo predominante (ver siguiente capítulo), basadas en análisis regionales.
- b) Las alternativas deben ser definidas, o al menos acordadas con los actores al interior de los paisajes a través de la construcción de nuevos referentes que expliquen la expresión emergente deseada, dado que el concepto de sostenibilidad puede alcanzar ideales diferentes tanto actores y relaciones hay en el paisaje.

Introducción

Dado que "no existe una identidad socioecológica única de los espacios en donde se desarrolla los sistemas agropecuarios en la Orinoquia y que estos son sistemas heterogéneos y dinámicos" (Andrade G. I., M. E. Chaves, G. Corzo y C. Tapia (eds.). 2018.), el ejercicio de análisis de sostenibilidad aquí descrito busca proponer y fundamentar la condición espacio específica de sostenibilidad de los paisajes cuya composición incluye usos agropecuarios, con el fin de coadyuvar los análisis por escenarios y la generación de lineamientos de gestión integral hacia la sostenibilidad y las oportunidades de gestión de la biodiversidad en ellos.

Así mismo, se han planteado en los ámbitos nacional e internacional, tendencias económicas tales como crecimiento verde, economía verde, bioeconomía y negocios verdes como aproximaciones estratégicas que permiten hacer operativo el desarrollo sostenible, o las transiciones hacia la sostenibilidad, por lo cual aquí se presenta una reflexión y análisis crítico de la función de estas tendencias en la conceptualización de la política pública nacional y la compresión de los conceptos vinculados a este paradigma de lo verde, con el fin de develar sus oportunidades, pero también los riesgos que supone su uso indiscriminado y de fácil aceptación.

1. Estructura conceptual de análisis

1.1. Revisión de literatura

La búsqueda para la revisión del estado del arte se realizó dentro de la base de datos de *Web of Science*, donde se obtuvo un conjunto de artículos científicos bajo ecuaciones de búsqueda con criterios de "sostenibilidad", "multifuncionalidad", "indicadores", "paisajes sostenibles", entre otros. Dichos resultados alimentaron la herramienta *Tree of Science*, que a partir de un algoritmo permitió identificar 178 con altos índices H, que significa que se encuentran entre los más citados.

La selección de los documentos también se realizó a partir del cuartil de la revista donde fue publicado, filtrando únicamente publicaciones de revistas cuartil 1 y 2.

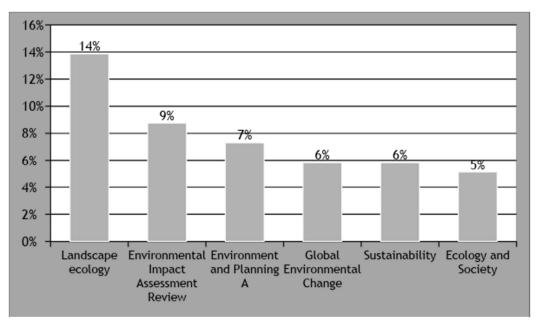


Figura 6 Revistas consultadas

Fuente: Elaboración propia

Los documentos fueron categorizados según su año de publicación, identificando, en su mayoría, información generada en la última década, para temas estratégicos en el análisis y categorización de la sostenibilidad de paisajes agropecuarios.

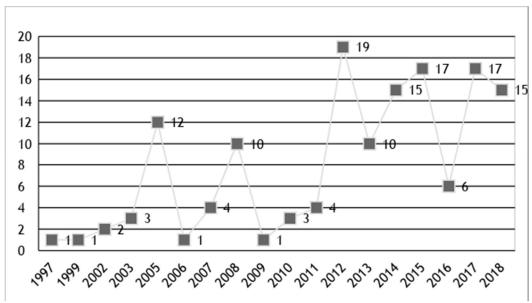


Figura 7 Año de publicación documentos consultados

Fuente: Elaboración propia

Dentro de estos documentos, se realizó una identificación de los aportes conceptuales, metodológicos y para la definición de principios, criterios o indicadores aplicables o relacionados con el análisis y categorización de la sostenibilidad de paisajes agropecuarios.

Figura 8 Categoría documentos analizados

Fuente: Elaboración propia

La categoría de definiciones se asignó para identificar conceptos como Sostenibilidad, Resiliencia, Paisajes, Multifuncionalidad, Productividad, entre otros; a continuación, se presentan algunos de los aportes identificados en los documentos, según el autor y la categoría identificada, y una selección más amplia en el Anexo 1.

Tabla 1 Conceptos representativos de la revisión documental

Concepto	Definición				
Paisaje	Un paisaje es un área que es espacialmente heterogénea en al menos un factor de interés (Turner, 2005), delineada por un actor para un conjunto específico de objetivos (Sayer <i>et al.</i> , 2013). Una totalidad que incluye tanto las dimensiones materiales naturales y culturales como los fenómenos espirituales (Angelstam <i>et al.</i> , 2013).				
Paisaje socioecológico	Un paisaje socioecológico es un sistema complejo de adaptación que vincula la diversidad cultural y biológica y también representan paisajes productivos que las personas han desarrollado, modelado y mantenido de manera sostenible durante un largo tiempo. El objetivo de un paisaje socioecológico es el bienestar de una comunidad, las formas de vida no humanas y su entorno geofísico (Halliday & Glaser, 2011)				
Paisaje Sostenible	Arreglos socioambientales relacionales, dinámicos y abiertos, que sostienen la vida en toda su diversidad				

Concepto	Definición				
•	Condiciones generales para lograr la sostenibilidad (que es el objetivo				
Principios	final) y deben formularse como un objetivo general que debe alcanzarso				
-	(Van Cauwenbergh et al., 2007).				
	La multifuncionalidad es uno de los "Diez principios para un enfoque				
	paisajístico" que reconcilian el sector agropecuario, la conservación y				
	otros usos competitivos de la tierra. En términos generales, se refiere a la				
	capacidad de un socioecosistema para entregar varios servicios				
	diferentes, simultáneamente. El enfoque de paisaje reconoce las diversas				
	compensaciones entre estos bienes y servicios, abordándolos de una				
	manera espacialmente explícita que reconcilia las múltiples necesidades,				
	preferencias y aspiraciones de las partes interesadas.				
Multifuncionalidad	A diferencia del concepto de "uso múltiple" la multifuncionalidad mide la				
,,,attinaneronanaa	diversidad de interrelaciones e interdependencias de las cuales se derivan				
	los bienes y servicios que están proporcionando los socioecosistemas.				
	La multifuncionalidad del paisaje, según Mastrangelo <i>et al.</i> , es la				
	capacidad de un paisaje para mantener (provide) simultáneamente				
	múltiples beneficios para la sociedad a partir de la interacción de sus				
	ecosistemas. La multifuncionalidad del paisaje a menudo se concibe y se				
	evalúa como el suministro conjunto de múltiples servicios ecosistémicos a				
	nivel del paisaje (Mastrangelo et al., 2014).				
	La productividad se refiere a la producción de biomasa a partir de la				
	fotosíntesis (Zheng, Fu, & Feng, 2016); el rendimiento agronómico es				
	productividad ecológica escrita de manera diferente, y las formas en que				
Productividad	los organismos interactúan entre sí y con sus ambientes abióticos				
Troductividad	determinan tanto la capacidad productiva del ecosistema agrícola como				
	la proporción de productividad ecológica que puede ser cosechada como				
	productos vegetales o animales (Robertson & Swinton, 2005)				
	El bienestar humano es un estado dependiente del contexto y la situación,				
	que comprende material básico para el buen vivir, la libertad y las				
Bienestar	opciones, la salud, las buenas relaciones sociales y la seguridad				
	(Millennium Ecosystem Assessment, 2005).				
	La sinergia es la relación interactiva dinámica entre los servicios del				
	ecosistema (Zheng, Fu, & Feng, 2016b). Según Bennet (2009), la sinergia				
	entre servicios ecosistémicos es la relación entre en la que ambos SE				
Sinergia	varían en la misma dirección (mejorando ambos servicios o disminuyendo				
	ambos servicios), como resultado de interacciones directas entre ellos o				
	respuestas a un controlador común (Bennett, Peterson, & Gordon, 2009)				
	La heterogeneidad se define como la variabilidad en la estatura,				
	composición, densidad y biomasa de la vegetación (Fuhlendorf y Engle				
	2001), se reconoce como la base de la biodiversidad, la resiliencia del				
	ecosistema y la multifuncionalidad (Kolasa y Pickett 1991; Ostfeld <i>et al.</i>				
Heterogeneidad	1997). Según Kandziora <i>et al.</i> , es la capacidad de un ecosistema para				
	proporcionar hábitats adecuados para diferentes especies, para grupos				
	funcionales de especies y para procesos. Es esencial para el				
	funcionamiento de los ecosistemas (Kandziora, Burkhard, & Müller, 2013).				
	Según Van Cauwenbergh <i>et al.</i> , existe eficiencia económica cuando la				
	eficiencia técnica, de asignación y financiera se cumplen al mismo				
Eficiencia	tiempo; la eficiencia técnica (o de producción) se logra cuando la				
	producción se produce a un costo mínimo. Esto minimiza el uso				

Concepto	Definición
	inadecuado (y, por lo tanto, el desperdicio) de insumos, como fertilizantes, pesticidas, alimentos para animales, energía, agua, trabajos mecánicos, edificios, mano de obra, tierra e información; La eficiencia asignativa, que es la asignación eficiente de recursos se alcanza cuando los retornos marginales son iguales a los costos marginales para todas las entradas y salidas. La eficiencia financiera, es una relación óptima de deuda / capital (solvencia) y una inversión óptima. Los subsidios pueden crear una fuerte dependencia, inhibiendo así la innovación. Los subsidios pueden ser directos (apoyo directo a los ingresos, pagos del segundo pilar, etc.) e indirectos (exenciones de impuestos e impuestos, indemnizaciones por catástrofes climáticas y pandémicas, apoyo a los precios, etc (Van Cauwenbergh et al., 2007b)
Redundancia	El concepto de redundancia funcional se encuentra en el núcleo de las teorías que relacionan los cambios en la función del ecosistema con la pérdida de especies. La redundancia funcional se basa en la observación de que algunas especies desempeñan funciones similares en comunidades y ecosistemas y, por lo tanto, pueden ser sustituibles con poco impacto en los procesos de los ecosistemas (Lawton y Brown, 1993 en (Rosenfeld, 2002) Varios estudios han demostrado que la pérdida de biodiversidad puede dañar los procesos del ecosistema, proporcionando una base sólida para la aplicación general de un enfoque de precaución para el manejo de la biodiversidad. Sin embargo, los detalles mecánicos de los efectos de la pérdida de especies y la generalidad de los impactos en los tipos de ecosistemas son poco conocidos. El nicho funcional es una herramienta conceptual útil para comprender la redundancia, donde el nicho funcional se define como el área ocupada por una especie en un espacio funcional n-dimensional. Los experimentos basados en un único atributo funcional están orientados hacia la búsqueda de redundancia, debido a que las especies tienen más probabilidades de tener nichos funcionales no superpuestos en un espacio funcional multidimensional (Rosenfeld, 2002)
Oferta de servicios ecosistémicos	Los servicios que prestan los ecosistemas son los beneficios que las personas obtienen de los ecosistemas. Estos beneficios contemplan servicios de suministro, como los alimentos y el agua; servicios de
Servicios ecosistémicos culturales	Los servicios ecosistémicos culturales se refieren a los beneficios intangibles que las personas reciben de los ecosistemas en forma de experiencias espirituales no materiales, religiosas, inspiradoras y educativas. Gee y Burkhard (2010, p. 349) diferencian entre beneficios y "cosas que tienen valor para las personas".
Salud mental y física	La salud, según la MA, se define como la fuerza, sensación de bienestar y buena capacidad funcional. La salud, en lenguaje popular, también connota una ausencia de enfermedad. La salud de toda una comunidad o población se refleja en las mediciones de la incidencia y prevalencia de la enfermedad, las tasas de mortalidad específicas por edad y la esperanza

Concepto	Definición
	de vida (Millennium Ecosystem Assessment, 2005). Según la OMS, la salud mental es un estado de bienestar en el que cada individuo se da cuenta de su propio potencial, puede hacer frente al estrés normal de la vida, puede trabajar de manera productiva y fructífera, y es capaz de hacer una contribución a su persona (The World Health Organisation, 2004).
Ingresos monetarios (bienes materiales básicos para una buena vida)	Capacidad para acceder a los recursos y así obtener un ingreso que permita contar con medios de subsistencia.
Nutrición	La nutrición es la ingesta de alimentos en relación con las necesidades dietéticas del organismo. Una buena nutrición (una dieta suficiente y equilibrada combinada con el ejercicio físico regular) es un elemento fundamental de la buena salud (FAO,2018)

Fuente: Elaboración propia

1.2. Marco Conceptual

El paisaje puede definirse e interpretarse de muchas maneras diferentes, que han surgido como un enfoque espacial en una amplia gama de campos y disciplinas (Cockburn, Cundill, Shackleton, & Rouget, n.d.); existen definiciones de paisajes por su geología (p.e. un paisaje kárstico), paisajes como forma de tierra o topografía (por ejemplo un paisaje fluvial), según su vegetación o cobertura (como un paisaje de páramo), el paisaje como uso del suelo (como un paisaje de plantaciones), que habla de cosas hechas a la acción del terreno y el movimiento, los efectos de las relaciones sociales, políticas y culturales históricamente específicas, y muchos otros tipos de definiciones pobladas de paisaje: paisajes históricos, paisajes como representación, paisajes de asentamientos, paisajes de migración y exilio, entre otros (Bender, 2002).

En términos generales, un paisaje es un área que es espacialmente específica en al menos un factor de interés (Turner, 2005), delineada por un actor para un conjunto específico de objetivos (Sayer *et al.*, 2013); es un espacio en la superficie de la tierra, con un grado de permanencia, con su propio carácter distintivo, ya sea topográfico o cultural, y sobre todo un espacio compartido por un grupo de personas (Jackson, 1984).

Según el programa de evaluación de ecosistemas del Milenio, un paisaje es un área de tierra que contiene un mosaico de ecosistemas, incluidos los ecosistemas dominados por el hombre. El término paisaje cultural se usa a menudo cuando se refiere a paisajes que contienen poblaciones humanas significativas (*Millennium Ecosystem Assessment*, 2005).

Angelstam *et al.*, sugieren que las diversas interpretaciones del término "paisaje" pueden analizarse de acuerdo con cuatro categorías distintas de significado:

- Interpretaciones biofísicas, es decir, el paisaje como un fenómeno puramente natural;
- > Interpretaciones antropogénicas, es decir, el paisaje como naturaleza con artefactos humanos;

- Las interpretaciones intangibles, es decir, el paisaje como una representación cognitiva de un espacio, las interpretaciones socioeconómicas y el paisaje como espacio socialmente organizado; y
- Interpretación socio-ecológica acoplada, es decir, el paisaje como una totalidad que incluye tanto las dimensiones materiales naturales y culturales como los fenómenos espirituales (Angelstam *et al.*, 2013).

Un paisaje socioecológico es un sistema complejo de adaptación que vincula la diversidad cultural y biológica y también representan paisajes productivos que las personas han desarrollado, modelado y mantenido de manera sostenible durante un largo tiempo. El objetivo de un paisaje socioecológico es el bienestar de una comunidad, las formas de vida no humanas y su entorno geofísico (Halliday & Glaser, 2011)

Si bien reconocemos que todos estos son entendimientos válidos de paisajes, nos alineamos con la cuarta categoría propuesta por Angelstam *et al*; en donde los componentes de los sistemas ecológicos y sociales están vinculados funcionalmente en paisajes socioecológicos complejos (Pickett *et al.*, 1997), que son contextos caracterizados por un amplio campo de relaciones, sistemas complejos que integran la dinámica (a menudo no lineal) de los sistemas naturales y antropogénicos, con los sistemas simbólicos (Lombardini, 2016), *siendo estos a su vez ecosistemas emergentes*.

El paisaje concebido como un mosaico heterogéneo de ecosistemas que cambia constantemente debido a las dinámicas de los seres humanos, necesita incorporar dentro de su planificación, estrategias que vinculen de una parte el conocimiento sobre los patrones y procesos que en él ocurren y de otro lado los sistemas sociales, políticos y económicos que producen un cambio en sus estructuras de funcionamiento (Romero, Flantua, & Rodríguez-Erazo, 2011).

Como eje se propone seguir la conceptualización de Nassauer & Opdam, (2008) un enfoque de análisis del paisaje para su planificación, donde el concepto de diseño deberá responder a las necesidades futuras de la sociedad para mejorar la función del paisaje relacionándolo con los procesos-patrones que se presentan en diferentes espacios. Se "define el diseño como cualquier cambio intencional de patrón de paisaje con el propósito de proporcionar de manera sostenible servicios ecosistémicos mientras se satisfacen las necesidades sociales y se respetan los valores de la sociedad" (Nassauer & Opdam, 2008).

La metodología aplicada para este análisis ha sido desarrollada dentro del programa de Ciencias Sociales y Saberes de la Biodiversidad bajo la denominación de *análisis de expresiones emergentes del paisaje*.

Para este análisis los "Paisajes Sostenibles" se definen como Arreglos socioambientales relacionales, dinámicos y abiertos, que sostienen la vida en toda su diversidad; esta definición conduce a la necesaria interpretación de los paisajes como Sistemas Complejos Adaptativos; por lo tanto, no deberían ser considerados a partir de un único indicador sintético de tipo ambiental, social o económico obtenido del arreglo matemático de datos representativos del paisaje.

Según Van Cauwenbergh *et al*, quienes proponen un marco de principios, criterios e indicadores (PC&I) para la evaluación de la sostenibilidad de los sistemas agrícolas, denominado marco de Evaluación de

la sostenibilidad de la agricultura y el medio ambiente (SAFE), para la evaluación de la sostenibilidad de sistemas de producción, se han desarrollado una variedad de herramientas de evaluación en el pasado, que incluyen los Estándares de Sostenibilidad con Principios, Criterios e Indicadores (PC&I), que es una lista temática estructurada de principios y criterios con una lista de verificación de indicadores correspondiente, que puede ser usada como una herramienta de evaluación genérica para problemas de sostenibilidad específicos. En este documento, se definen los principios como condiciones generales para lograr la sostenibilidad (que es el objetivo final) y deben formularse como un objetivo general que debe alcanzarse (Van Cauwenbergh et al., 2007a).

El análisis de la sostenibilidad como expresión emergente del paisaje básicamente considera la manera en la que se encuentran entretejidos los atributos del paisaje denotando una hipótesis de su estructura que permite analizar en tiempo y espacio su comportamiento en relación a tres principios de sostenibilidad: Multifuncionalidad, Productividad y Bienestar.

Expresiones Emergentes - Sostenibilidad

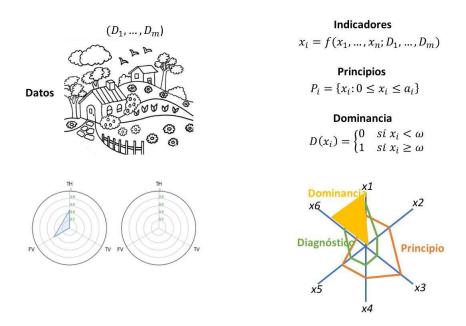
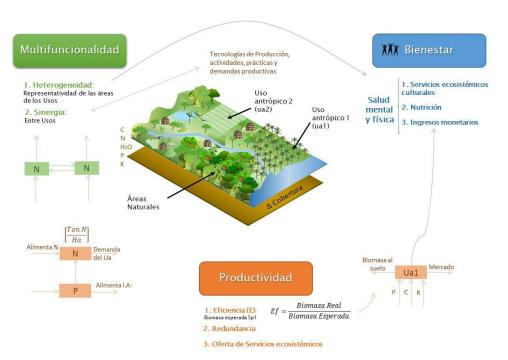
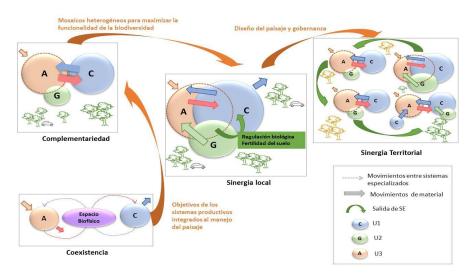


Figura 9 Expresiones emergentes sostenibilidad

En relación con los principios propuestos: Multifuncionalidad, Productividad y Bienestar:




Figura 10 Principios e Indicadores de sostenibilidad

<u>La multifuncionalidad</u> del paisaje, según Mastrangelo *et al.*, es su capacidad para mantener simultáneamente múltiples beneficios para la sociedad a partir de la interacción de sus ecosistemas, el suministro conjunto de múltiples servicios ecosistémicos (Mastrangelo *et al.*, 2014). A diferencia del concepto de "uso múltiple", la multifuncionalidad mide la diversidad de interrelaciones e interdependencias de las cuales se derivan los bienes y servicios que están proporcionando los socioecosistemas.

Dentro del principio de multifuncionalidad, la heterogeneidad se define como la variabilidad en la estatura, composición, densidad y biomasa de la vegetación (Fuhlendorf y Engle 2001), se reconoce como la base de la biodiversidad, la resiliencia del ecosistema y la multifuncionalidad (Kolasa y Pickett 1991; Ostfeld *et al.* 1997). Según Kandziora *et al.*, es la capacidad de un ecosistema para proporcionar hábitats adecuados para diferentes especies, para grupos funcionales de especies y para procesos. Es esencial para el funcionamiento de los ecosistemas (Kandziora, Burkhard, & Müller, 2013).

La sinergia es la relación interactiva dinámica entre los servicios del ecosistema (Zheng, Fu, & Feng, 2016b). Según Bennet (2009), la sinergia entre servicios ecosistémicos es la relación entre en la que ambos SE varían en la misma dirección (mejorando ambos servicios o disminuyendo ambos servicios), como resultado de interacciones directas entre ellos o respuestas a un controlador común (Bennett, Peterson, & Gordon, 2009).

Fuente: Adaptación de Moraine, 2017. A social-ecological framework for analyzing and designing integrated crop-livestock systems from farm to territory levels. Publicado en Renewable Agriculture and Food Systems

Figura 11 Adaptación de Moraine, 2017

<u>La productividad</u> como principio, se refiere a la producción de biomasa a partir de la fotosíntesis (Zheng, Fu, & Feng, 2016a); el rendimiento agronómico es productividad ecológica escrita de manera diferente, y las formas en que los organismos interactúan entre sí y con sus ambientes abióticos determinan tanto la capacidad productiva del ecosistema agrícola como la proporción de productividad ecológica que puede ser cosechada como productos vegetales o animales (Robertson & Swinton, 2005).

Bajo el principio de productividad, la eficiencia metabólica es la cantidad de energía necesaria para mantener una biomasa específica, que también sirve como un indicador de estrés para el sistema (Kandziora *et al.*, 2013).

Según Van Cauwenbergh *et al.*, existe eficiencia económica cuando la eficiencia técnica, de asignación y financiera se cumple al mismo tiempo; la eficiencia técnica (o de producción) se logra cuando la producción se produce a un costo mínimo. Esto minimiza el uso inadecuado (y, por lo tanto, el desperdicio) de insumos, como fertilizantes, pesticidas, alimentos para animales, energía, agua, trabajos mecánicos, edificios, mano de obra, tierra e información; La eficiencia asignativa, que es la asignación eficiente de recursos se alcanza cuando los retornos marginales son iguales a los costos marginales para todas las entradas y salidas. La eficiencia financiera, es una relación óptima de deuda / capital (solvencia) y una inversión óptima. Los subsidios pueden crear una fuerte dependencia, inhibiendo así la innovación. Los subsidios pueden ser directos (apoyo directo a los ingresos, pagos del segundo pilar, etc.) e indirectos (exenciones de impuestos e impuestos, indemnizaciones por catástrofes climáticas y pandémicas, apoyo a los precios, etc. (Van Cauwenbergh *et al.*, 2007b).

El concepto de redundancia funcional se encuentra en el núcleo de las teorías que relacionan los cambios en la función del ecosistema con la pérdida de especies. La redundancia funcional se basa en la observación de que algunas especies desempeñan funciones similares en comunidades y ecosistemas y, por lo tanto, pueden ser sustituibles con poco impacto en los procesos de los ecosistemas (Lawton y Brown, 1993 en Rosenfeld, 2002).

Varios estudios han demostrado que la pérdida de biodiversidad puede dañar los procesos del ecosistema, proporcionando una base sólida para la aplicación general de un enfoque de precaución para el manejo de la biodiversidad. Sin embargo, los detalles mecánicos de los efectos de la pérdida de especies y la generalidad de los impactos en los tipos de ecosistemas son poco conocidos. El nicho funcional es una herramienta conceptual útil para comprender la redundancia, donde el nicho funcional se define como el área ocupada por una especie en un espacio funcional n-dimensional. Los experimentos basados en un único atributo funcional están orientados hacia la búsqueda de redundancia, debido a que las especies tienen más probabilidades de tener nichos funcionales no superpuestos en un espacio funcional multidimensional (Rosenfeld, 2002).

Los servicios que prestan los ecosistemas son los beneficios que las personas obtienen de los ecosistemas. Estos beneficios contemplan servicios de suministro, como los alimentos y el agua; servicios de regulación, como la regulación de las inundaciones, las sequías, la degradación del suelo y las enfermedades; servicios de base, como la formación del suelo y los ciclos de los nutrientes; y servicios culturales, como los beneficios recreacionales, espirituales, religiosos y otros beneficios intangibles (Millennium Ecosystem Assessment, 2005).

En el <u>principio de Bienestar</u> se considera la salud mental, física y ecosistémica. El bienestar humano es un estado dependiente del contexto y la situación, que comprende material básico para el buen vivir, la libertad y las opciones, la salud, las buenas relaciones sociales y la seguridad (*Millennium Ecosystem Assessment*, 2005).

La salud, según la MA, se define como la fuerza, sensación de bienestar y buena capacidad funcional. La salud de toda una comunidad o población se refleja en las mediciones de la incidencia y prevalencia de la enfermedad, las tasas de mortalidad específicas por edad y la esperanza de vida (*Millennium Ecosystem Assessment*, 2005). Según la OMS, la salud mental es un estado de bienestar en el que cada individuo se da cuenta de su propio potencial, puede hacer frente al estrés normal de la vida, puede trabajar de manera productiva y fructífera, y es capaz de hacer una contribución a su persona (The World Health Organisation, 2004).

La nutrición es la ingesta de alimentos en relación con las necesidades dietéticas del organismo. Una buena nutrición (una dieta suficiente y equilibrada combinada con el ejercicio físico regular) es un elemento fundamental de la buena salud (FAO, 2018).

El bienestar concibe los beneficios intangibles que las personas reciben de los ecosistemas en forma de experiencias espirituales no materiales, religiosas, inspiradoras y educativas. Gee y Burkhard (2010, p. 349) diferencian entre beneficios y "cosas que tienen valor para las personas" (Kandziora *et al.*, 2013).

2. Análisis de Sostenibilidad

En la metodología de expresiones emergentes un indicador es una variable de estado del paisaje en relación sistémica con los demás indicadores, que considera los datos disponibles del paisaje para ser definida. Un principio, por su parte, considera un conjunto de indicadores y las condiciones o criterios que estos deberían cumplir para satisfacer el principio, es decir, este criterio, dado que el concepto de sostenibilidad puede alcanzar ideales diferentes tanto actores y relaciones hay en el paisaje, debe

definirse, o al menos acordarse con dichos actores a través de la construcción de nuevos referentes que expliquen la expresión emergente deseada.

El análisis está dado en tres (3) módulos: 1) Usos (y prácticas dependiendo de la escala) del paisaje, 2) La "Trama del paisaje", que describe la composición y estructura del mismo y sus relaciones y 3) La medición de los indicadores de sostenibilidad como expresión de la relación y efectos positivos y negativos de los usos, en la funcionalidad del paisaje. Básicamente considera la manera en la que se encuentran entretejidos los atributos del paisaje denotando una hipótesis de su estructura que permite analizar en tiempo y espacio su comportamiento en relación a los tres principios de sostenibilidad.

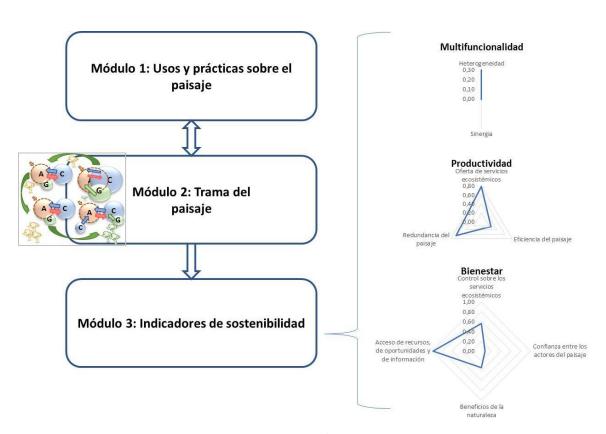


Figura 12 Análisis de sostenibilidad

Para este análisis, el módulo de uso se describe en la identificación de sistemas de producción (aproximación 2), el cual sirve también de insumo, dada la condición de la metodología utilizada, para el cálculo del indicador de heterogeneidad del principio de multifuncionalidad.

2.1 Principio Multifuncionalidad

2.1.1. Indicador Heterogeneidad

Tabla 2 Ficha meotodológica de Indicador Heterogeneidad

	Tubla 2 i icha medidadiogica de mi				
	dicadores socioeconomicos para la Investigación en cios Ecosistémicos para la Toma de Decisiones				
Heterogeneidad en los usos del suelo					
Instituto de Investigación	n de Recursos Biológicos Alexander von Humboldt				
Nombre del indicador:	Heterogeneidad en los usos del suelo				
Código de identificación	S-M-01				
Definición del indicador:	La heterogeneidad en los usos del suelo es una medida de la participación porcentual que tienen las diferentes coberturas del paisaje.				
Fórmula de cálculo					
$H = \frac{N^2 H_V - N^2 + N}{N - 1} \cdot 100\%$					

Donde:

H: es la heterogeneidad en los usos del suelo para un cierto paisaje.

N: es el número de usos identificados en el paisaje.

H_V: Es la heterogeneidad virtual, la cual se calcula con la siguiente fórmula:

$$H_v = 1 - \frac{1}{N} \sum_{i=1}^{N} \binom{A_i}{A_T}^2$$

Donde:

 A_i : es el área de la i-ésima cobertura.

 A_T : es el área total del paisaje analizado.

Definición de las variables relacionadas					
Heterogeneidad virtual La Heterogeneidad virtual H_V es una medida auxiliar utilizada para el cálculo de la heterogeneidad en los usos del suelo de un cierto paisaje. Corresponde al promedio ponderado de áreas de las coberturas en el paisaje.					
Unidad del indicador:	Porcentual				
Fuente de datos:	Coberturas de usos del paisaje				
Periodicidad del indicador:	Depende de la periodicidad de captura y reporte de la fuente de datos.				
Unidad espacial de análisis: La fórmula admite datos de diferentes unidades espaciales mientras se garantice que todos utilizan la misma unidad espacial.					
Interpretación del indicador:	Supongamos un paisaje con n usos del suelo. Para valores de la heterogeneidad en los usos del suelo cercanos al 0% se dice que el paisaje es homogéneo, mientras que para valores cercanos al 100% se dice que el paisaje es heterogéneo. En el contexto de paisajes sostenibles, es deseable que el paisaje sea muy heterogéneo.				
Disponibilidad del indicador:	15 enero 2019, Orinoquía colombiana				
Referencias bibliográficas del indicador:	Redondo J.M. y Bustamante C. (2018). La heterogeneidad en los usos del suelo.				
Fecha de elaboración de la ficha:	01 de octubre de 2018				

2.1.1.1. Aproximación 1

Tabla 3 Análisis del Indicador de Heterogeneidad, Aproximación 1

	rabia 5 Analisis del malcador de neceroge	Cant.			
Cod	NOM_CUENCA	Coberturas	н	Н%	Clasificación
3101	Río Inírida Alto	15	0,4	44,2	2
3104	Río Inírida Medio	15	0,1	10,4	1
3105	Río Papunaya	9	0,1	13,9	1
3107	Caño Nabuquén	7	0,4	41,0	2
	RInírida_(mi),_hasta_bocas_Caño_Bocón,_y_RLas				
3108	Viñas	17	0,3	34,4	2
3110	Caño Bocón	12	0,2	15,6	1
3201	Río Guayabero	14	0,4	40,6	2
3202	Río Guape	13	0,5	53,8	2
3203	Rio Losada	16	0,7	67,8	3
3204	Alto Guaviare	18	0,6	59,5	2
3206	Río Ariari	24	0,9	89,9	3
3207	Río Guejar	20	0,9	86,9	3
3210	Medio Guaviare	24	0,7	68,4	3
3212	Río Siare	10	0,4	44,7	2
3213	Río Iteviare	12	0,6	55,9	2
3214	Bajo Guaviare	19	0,2	24,9	1
3215	Caño Minisiare	8	0,0	3,3	1
3216	Alto Río Uvá	11	0,3	26,9	1
3217	Bajo Río Uvá	16	0,4	40,1	2
3218	Caño Chupabe	14	0,2	15,0	1
3301	Alto Vichada	22	0,5	48,2	2
3302	Río Guarrojo	15	0,6	55,5	2
3303	Río Muco	21	0,7	71,3	3
3305	Directos Vichada Medio	16	0,6	64,3	3
3306	Bajo Vichada	15	0,7	66,4	3
3401	Alto Río Tomo	21	0,4	42,5	2
3402	Río Elvita	16	0,5	53,4	2
3403	Bajo Río Tomo	16	0,4	38,3	2
3405	Caño Lioni o Terecay	12	0,3	27,0	1
3501	Rio Metica (Guamal - Humadea)	22	0,8	84,6	3
3502	Río Guayuriba	23	0,9	92,1	3

		Cant.			
Cod	NOM_CUENCA	Coberturas	Н	Н%	Clasificación
3503	Río Guatiquía	24	0,9	90,1	3
3504	Río Guacavía	21	0,9	86,1	3
3505	Río Humea	23	0,9	87,3	3
3506	Río Guavio	19	0,9	91,4	3
3507	Río Garagoa	24	0,9	86,0	3
3508	Río Lengupá	17	0,9	93,4	3
3509	Río Upía	29	0,9	94,1	3
3510	Río Negro	25	0,7	69,5	3
3511	Directos Rio Metica entre ríos Guayuriba y Yucao	25	0,9	88,9	3
3512	Río Yucao	20	0,7	70,8	3
3513	Río Melúa	15	0,6	62,8	3
3514	Caño Cumaral	14	0,4	42,0	2
3515	Río Manacacias	24	0,6	59,6	2
3516	Lago de Tota	21	0,8	77,3	3
3518	Río Túa y otros directos al Meta	23	0,8	75,8	3
3519	Río Cusiana	28	0,9	89,6	3
3520	Directos al Meta entre ríos Cusiana y Cravo Sur	19	0,4	41,9	2
3521	Río Cravo Sur	27	0,9	88,5	3
3522	Caño Guanápalo y otros directos al Meta	27	0,6	60,3	2
3523	Río Pauto	24	0,6	63,9	3
3524	Directos al Río Meta entre ríos Pauto y Carare	16	0,4	35,5	2
3525	Directos Bajo Meta entre ríos Casanare y Orinoco	23	0,5	46,8	2
3526	Directos al Río Meta entre ríos Cusiana y Carare	21	0,7	67,7	3
3527	Directos al Río Meta entre ríos Humea y Upia (mi)	22	0,8	78,7	3
3601	Río Ariporo	20	0,6	63,0	3
3602	Río Casanare	26	0,8	77,0	3
3603	Río Cravo Norte	27	0,8	76,5	3
3604	Caño Samuco	11	0,2	23,3	1
3605	Caño Aguaclarita	10	0,3	29,3	1
3701	Río Chítaga	19	0,9	85,9	3
3702	Río Margua	16	0,8	75,5	3
3703	Río Cobugón - Río Cobaría	22	0,8	76,6	3
3704	Río Bojabá	18	0,8	80,7	3
3705	Rio Banadia y otros Directos al Río Arauca	26	0,8	79,7	3
3706	Directos Río Arauca (md)	25 17	0,4	42,4	2
3801	Río Vita	[17	0,4	38,7	2

		Cant.			
Cod	NOM_CUENCA	Coberturas	Н	Н%	Clasificación
3802	Río Tuparro	20	0,4	44,3	2
3803	Caño Matavén	14	0,3	33,7	2
3804	Directos Río Atabapo (mi)	12	0,7	69,3	3
3805	Directos Orinoco entre ríos Tomo y Meta (mi)	14	0,4	39,2	2
3809	Río Cinaruco y Directos Río Orinoco	18	0,3	27,0	1
3901	Alto Río Apure	6	0,4	39,3	2

2.1.1.2 Aproximación 2

Usos / Sistemas de producción

Para la definición de los sistemas de producción, se partió del concepto de paisaje, como sistema socioecológico adaptativo y complejo, que vincula la diversidad cultural y biológica y cuyo objetivo es el bienestar de la sociedad, las formas de vida no humanas y su entorno geofísico (Halliday & Glaser, 2011).

Insumos

Predios Rurales:

Se identificaron los Predios rurales de la Orinoquía, en la Base de datos Geográfica Catastral a nivel nacional de la Subdirección de Catastro del IGAC, de agosto de 2018, que son los terrenos que se ubican fuera de los perímetros urbanos: cabecera, corregimientos y otros núcleos aprobados por el Plan de Ordenamiento Territorial.

Según el IGAC, un terreno es la porción de tierra con una extensión geográfica definida (Artículo 22 Resolución 70 de 2011), Sobre la cual se censan todas las construcciones existentes (IGAC, 2018).

Fisiografía:

El mapa de paisajes fisiográficos de Orinoquía - Amazonía (ORAM), Colombia (IGAC, 1999), que se basa en la metodología de Análisis fisiográfico impulsada por el CIAF, considera los siguientes criterios para definir y caracterizar las unidades cartográficas:

- 1. Geográficos (Regiones Naturales)
- 2. Climáticos
- 3. Geogénesis Macrorelieve
- 4. Material parental de los suelos. Mesorelieve
- 5. Hidrología
- 6. Suelos
- 7. Vegetación Natural y uso de la tierra
- 8. Inestabilidad de los paisajes

El análisis fisiográfico se basa en la relación fisiografía-suelo. El suelo es un elemento constitutivo de los paisajes fisiográficos. El ambiente geomorfológico determinado por el relieve, el material parental,

los organismos y el tiempo, junto con el clima, son los factores formadores de estos suelos que encierran.

La estructura jerárquica del Análisis Fisiográfico define los siguientes niveles:

Tabla 4 Estructura Jerárquica del Análisis fisiográfico

Nivel	
Provincia Fisiográfica	Orinoquia - Amazonia
Subprovincia Fisiográfica	Piedemonte tectonizado de Arauca,
	Casanare, Meta
	Piedemonte Depositacional de Meta y
	Casanare
	Planicies bajas de la Orinoquia, inundable
	(Casanare y Arauca)
	Planicies altas de la Orinoquia, no
	inundable (Meta y Vichada).

Fuente: ORAM, 1999

Dentro de la definición de unidades fisiográficas, se incluye el clima como tercer elemento de categorización, porque es un factor formado de suelos y paisajes, muy influyente a nivel general, y sobre el que menos se puede intervenir para modificar sus características o sus acciones sobre los demás factores formadores (ORAM, 1999).

Definición de unidades

Categorización de las Coberturas

A partir del Mapa de Coberturas de la Tierra Metodología Corine Land Cover Adaptada para Colombia Escala 1:100.000 (Período 2010 - 2012), se realizó una identificación de las coberturas asociadas a Territorios Agrícolas, Bosques y Áreas Seminaturales, Áreas húmedas, y Superficies de agua, que luego fueron combinadas con el mapa de Predios rurales de la Orinoquía (2018), para identificar qué tipo de coberturas se localizan dentro de los predios.

La capa IGAC, contiene 453.567 polígonos identificados como terrenos; un terreno se define como un inmueble no separado por otro predio público o privado, con o sin construcciones y/o edificaciones, perteneciente a personas naturales o jurídicas. El predio mantiene su utilidad, aunque esté atravesado por corrientes de agua pública (IGAC, 2015).

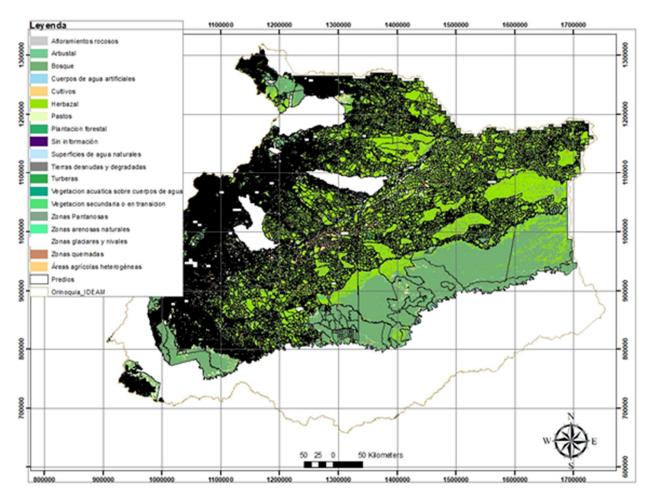


Figura 13 Categoría 1 Cobertura de la Tierra y Predios Región Orinoquía

Fuente: IDEAM, 2012 - IGAC, 2018

Se realizó una categorización de las coberturas encontradas dentro de los predios de la Orinoquía, agrupando según los atributos de interés, en las siguientes 19 categorías:

Tabla 5 Categorías generadas a partir de la Cobertura de la Tierra (20120-2012) en la Orinoquía:

Categoría 1	Leyenda de Cobertura Corine Land Cover
	2.1.1. Otros cultivos transitorios
	2.1.2. Cereales
	2.1.4. Hortalizas
Cultivos	2.1.5. Tubérculos
	2.2.1. Cultivos permanentes herbáceos
	2.2.2. Cultivos permanentes arbustivos
	2.2.3. Cultivos permanentes arbóreos
Pastos	2.3.1. Pastos limpios

Categoría 1	Leyenda de Cobertura Corine Land Cover	
	2.3.2. Pastos arbolados	
	2.3.3. Pastos enmalezados	
	2.4.1. Mosaico de cultivos	
	2.4.2. Mosaico de pastos y cultivos	
	2.4.3. Mosaico de cultivos, pastos y espacios	
Áreas agrícolas heterogéneas	naturales	
Aleas agricolas fieterogeneas	2.4.4. Mosaico de pastos con espacios	
	naturales	
	2.4.5. Mosaico de cultivos con espacios	
	naturales	
	3.1.1. Bosque denso	
Bosque	3.1.2. Bosque abierto	
bosque	3.1.3. Bosque fragmentado	
	3.1.4. Bosque de galería y ripario	
Plantación Forestal	3.1.5. Plantación forestal	
Herbazal	3.2.1. Herbazal	
Arbustal	3.2.2. Arbustal	
Vegetación Secundaria o en		
Transición	3.2.3. Vegetación secundaria o en transición	
Zonas arenosas naturales	3.3.1. Zonas arenosas naturales	
Afloramientos rocosos	3.3.2. Afloramientos rocosos	
Tierras desnudas y degradadas	3.3.3. Tierras desnudas y degradadas	
Zonas quemadas	3.3.4. Zonas quemadas	
Zonas glaciares y nivales	3.3.5. Zonas glaciares y nivales	
Zonas Pantanosas	4.1.1. Zonas Pantanosas	
Turberas	4.1.2. Turberas	
Vegetación acuática sobre cuerpos	4.1.3. Vegetación acuática sobre cuerpos de	
de agua	agua	
Superficies de Agua Naturales	5.1.1. Ríos (50 m)	
	5.1.2. Lagunas, lagos y ciénagas naturales	
Cuerpos de agua artificiales	5.1.4. Cuerpos de agua artificiales	
Sin información	9.9. Nubes	

Fuente: Adaptación de IDEAM, 2012

Dentro de cada uno de los predios se identificó la combinación de coberturas existentes para generar las unidades de análisis en diferentes niveles; se realizaron tres categorizaciones, asignando un código de acuerdo a la combinación de unidades presentes en cada uno de los terrenos, sin tomar en consideración el porcentaje de área de cada cobertura.

La categorización 1 se realizó a partir de las 19 categorías generadas a partir del Mapa de Coberturas de la Tierra Metodología Corine Land Cover Adaptada para Colombia Escala

1:100.000 (Período 2010 - 2012), con el fin de conocer al detalle el tipo de uso que se está dando en las unidades generadas.

A continuación, se presenta una tabla modelo. La tabla completa se presenta como Anexo 1 a este documento.

Tabla 6 Identificación y codificación de combinaciones de coberturas existentes en cada predio (Orinoquia).

	(Or moquiu).			
id	Cobertura 1	Cobertura 2	Cobertura 3	Cobertura 4
1	Áreas Agrícolas heterogéne			
2	Afloramient os rocosos			
3	Arbustal			
4	Bosque			
5	Cuerpos de agua artificiales			
6	Cultivos			
7	Herbazal			
38	Arbustal	herbazal		
45	bosque	pastos		
68	herbazal	zonas pantanosas		
76	pastos	zonas pantanosas		
93	Áreas Agrícolas heterogéne as	bosque	Herbazal	
114	Áreas Agrícolas heterogéne as	herbazal	veg secundaria	
132	Arbustal	bosque	Herbazal	
184	Cultivos	Herbazal	plantación forestal	
285	bosque	Herbazal	pastos	tierras degradadas
286	bosque	Herbazal	pastos	zonas pantanosas

id	Cobertura 1	Cobertura 2	Cobertura 3	Cobertura 4
287	bosque	Herbazal	pastos	zonas quemadas
288	bosque	Herbazal	pastos	vegetación secundaria
289	bosque	Herbazal	pastos	vegetación acuática
290	bosque	Herbazal	pastos	Superficie de agua natural
291	bosque	Herbazal	pastos	plantación forestal
292	bosque	Herbazal	pastos	tierras degradadas

Fuente: Elaboración propia

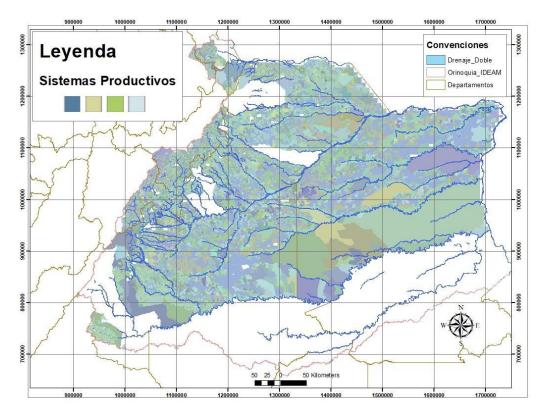


Figura 14 Categorización tipo 1

Fuente: Elaboración propia

Para la categorización 2, se utilizó una diferenciación de los sistemas productivos para evidenciar las unidades con usos de tipo natural de un solo tipo (por ejemplo, únicamente herbazales),

antrópico de un solo tipo (p.e. Plantaciones Forestales), unidades que presentan usos productivos o antrópicos y usos naturales combinados (p.e. Bosque, cultivos y superficies naturales de agua), unidades que contienen coberturas naturales diferentes, como por ejemplo herbazales con arbustales, y unidades con usos productivos o antrópicos combinados, como plantaciones y cultivos; se identificaron de igual manera las unidades que contienen áreas degradadas, y, algunas áreas sin información.

Esta diferenciación se generó para evidenciar las combinaciones existentes entre usos de tipo natural, uso de tipo antrópico, áreas sin información y áreas degradadas que no son de origen natural únicamente, sino a terrenos desprovistos de vegetación o con escasa cobertura vegetal, debido a la ocurrencia de procesos tanto naturales como antrópicos de erosión y degradación extrema y/o condiciones climáticas extremas (IGAC, 2010).

Tabla 7 Categorización tipo 1

C_	_	
1	Tipo Sistema Productivo	Área (ha)
1	Natural	375.628,7
2	Antrópico	201.652,5
3	Natural + Antrópico	15.680.076,3
4	Natural + Natural	4.979.889,9
5	Antrópico + Antrópico	234.574,1
6	Áreas degradadas	90.887,2
7	Sin información	1.017,8

Fuente: Elaboración propia

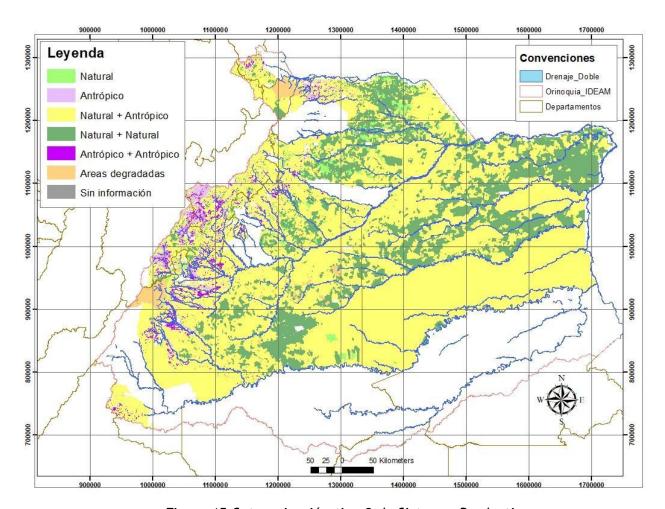


Figura 15 Categorización tipo 2 de Sistemas Productivos

Fuente: Elaboración propia

Se observa que más del 70% del área en la que el territorio tiene predios, los sistemas productivos están caracterizados por una combinación de sistemas naturales y antrópicos, que pueden representar combinaciones que favorecen la heterogeneidad de los sistemas, al conservar áreas naturales.

La categorización 3 se generó con el propósito de identificar las combinaciones existentes entre las áreas de cultivo, las áreas naturales, las áreas de pastos, las áreas heterogéneas, y las áreas con plantaciones, con el fin de identificar con mayor claridad los tipos de actividades productivas que se presentan en la Orinoquia, y sus combinaciones con espacios naturales. Para ello, se generaron las siguientes combinaciones:

Tabla 8 Sistemas productivos categorización 3

Tipo Sistema Productivo	Área (ha)	(%)
Cultivos + A. Naturales	157.298,21	0,66
Pastos + A. Naturales + A. Degradadas	1.176,59	0,005
Plantaciones F. + A. Naturales	40.069,92	0,17
Pastos + A. Naturales + Plantaciones F.	36.712,79	0,15
Áreas H. + Cultivo	13.764,33	0,06
Áreas H. + Cultivos + A. Naturales	137.490,60	0,57
Áreas H. + Pastos	289.660,05	1,21
	1.329.699,5	
Áreas H. + Pastos + A. Naturales	6	5,54
	8.913.412,9	
Áreas H. + A. Naturales	0	37,17
Áreas H. + Cultivos + Pastos	12.368,03	0,05
		0,000
Áreas H. + Cultivos + Plantaciones	19,99	1
	3.150.438,7	
Pastos + A. Naturales	0	13,14
Áreas H. + Cultivos + Pastos + A. Naturales	198.210,97	0,83
Áreas H. Pastos + Plantaciones	8.936,56	0,04
Áreas H. + Pastos + A. Degradadas + A. Naturales	19.008,63	0,08
Áreas H. + Pastos + Plantaciones + A. Naturales	1.550,32	0,01
Áreas H. + Pastos + A. Degradadas	65,51	0,00
Áreas H. + Plantaciones	400,55	0,00
Áreas H. + A. Degradadas	178,41	0,00
Áreas H. + Plantaciones+ A. Naturales	3.721,61	0,02
Áreas H. + Cultivos + A. Degradadas+ A. Naturales	7.686,93	0,03
Áreas H. + Cultivos + Pastos + Plantaciones + A. Naturales	2.036,46	0,01
Cultivos + Pastos	35.733,66	0,15
Áreas H. + Cultivos + Plantaciones + A. Naturales	2.113,38	0,01
A. Naturales + A. Degradadas	87.159,45	0,36
Cultivos + Pastos + A. Naturales	227.810,04	0,95
Cultivos + Pastos + Plantaciones	54.724,00	0,23
Pastos + Plantaciones	9.795,60	0,04
		0,000
Pastos + A. Degradadas	29,60	1

Fuente: Elaboración propia

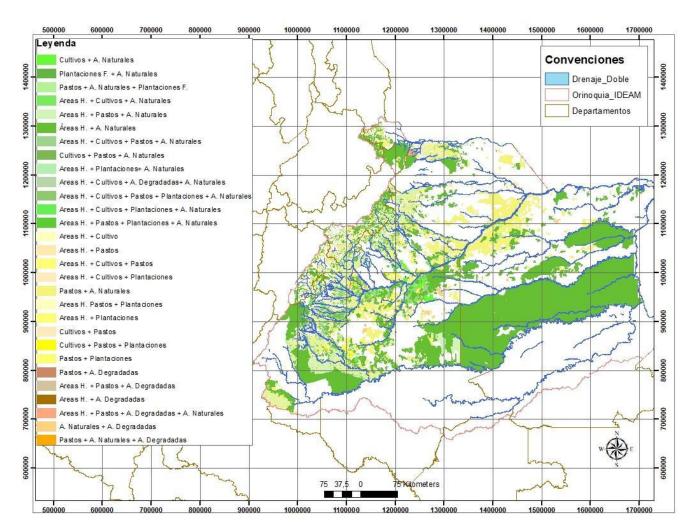


Figura 16 Categorización tipo 3

Fuente: Elaboración propia

Tabla 9 Cálculo Heterogeneidad a escala municipal

	rubia / Catcato rieterogenerada a escata mamerpat						
Departamento	Municipio	Promedio d	ePromedio de Número				
Depai tamento	Municipio	Heterogeneidad	de coberturas	de predio			
	ARAUCA	0,4	2,3	554199,0			
	ARAUQUITA	0,5	2,3	263114,0			
ADALICA	CRAVO NORTE	0,4	2,5	572268,8			
ARAUCA	FORTUL	0,4	2,1	143007,7			
	PUERTO RONDÓN	0,4	2,4	180209,8			
	SARAVENA	0,4	1,9	143707,5			
	TAME	0,5	2,5	45286,0			
Total ARAUCA		0,4	2,2	1901792,7			

Departamento	Municipio	Promedio de Heterogeneidad		Suma de Área de predio
BOGOTÁ, D.C. BOGOTÁ, D.C.		0,5		145224,2
Total BOGOTÁ, [0,5	3,1	145224,2
	ALMEIDA	0,4	1,6	7255,4
	AQUITANIA	0,2		114065,5
	BERBEO	0,4	1,8	7410,8
	BOYACÁ	0,1	1,1	5482,1
	CAMPOHERMOSO	0,4	2,0	33823,4
	CHINAVITA	0,3	1,6	18152,9
	CHISCAS	0,4	2,6	61402,7
	CHITA	0,3	2,0	54441,5
	CHIVOR	0,3	1,7	12548,0
	CIÉNEGA	0,1	1,1	5998,8
	CUBARÁ	0,4		23334,2
	CUCAITA	0,1		1854,4
	CUÍTIVA	0,2		1240,7
	EL COCUY	0,1		68,0
	G £ICÁN	0,5		23224,7
	GAMEZA	0,4		4905,3
	GARAGOA	0,2	1,4	18848,0
	GUATEQUE	0,3		3614,8
	GUAYATÁ	0,1		12272,1
	JENESANO	0,1		5961,5
	LA CAPILLA	0,2		7026,1
	LABRANZA GRANDE	0,4	•	64512,4
	MACANAL	0,3		20153,9
	MIRAFLORES	0,4		18819,6
	MONGUA	0,5		26121,2
	MONGUÍ	0,3		425,8
	NUEVO COLÓN	0,1		5418,8
	PACHAVITA	0,3		6784,1
	PÁEZ	0,3		36074,0
	PAJARITO	0,4		26529,7
	PAYA	0,5		64687,2
	PESCA	0,5	2,2	13984,7
	PISBA	0,3	1,8	30161,7
	RAMIRIQUÍ	0,1	1,2	13265,6
	RONDÓN	0,3	1,7	15546,2
BOYACÁ	SAMACÁ	0,1		4765,6
DO 1 ACA	SAN EDUARDO	0,4		9232,2

Departamento	Municipio	Promedio de Heterogeneidad	ePromedio de Número de coberturas	Suma de Área de predio
	SAN LUIS DE			
	GACENO	0,5	2,1	48560,0
	SANTA MARÍA	0,4	2,1	25510,5
	SIACHOQUE	0,0	1,0	306,3
	SOCHA	0,1	1,4	584,5
	SOCOTÁ	0,4	2,1	31562,2
	SOGAMOSO	0,4	1,6	4875,4
	SOMONDOCO	0,2	1,3	5396,3
	SORACÁ	0,0	1,0	2142,5
	SUTATENZA	0,3	1,4	3934,3
	TASCO	0,5	2,0	3512,1
	TENZA	0,1	1,2	4232,6
	TIBANA	0,2	1,3	11093,9
	TOTA	0,1	1,2	2896,3
	TUNJA	0,1	1,1	2582,3
	TURMEQUÉ	0,2	1,3	8285,5
	UMBITA	0,1	1,2	13512,5
	VENTAQUEMADA	0,1	1,2	14459,9
	VIRACACHÁ	0,1	1,1	5415,1
	ZETAQUIRÁ	0,3	1,7	19029,0
Total BOYACÁ	_1	0,2	1,4	987304,7
	SAN VICENTE DEI		,	ŕ
CAQUETÁ	CAGUÁN	0,4	2,1	113533,4
Total CAQUETÁ		0,4	2,1	113533,4
	AGUAZUL	0,3	1,9	143925,6
	CHAMEZA	0,4	1,9	24467,8
	HATO COROZAL	0,4	2,4	553674,5
	LA SALINA	0,3	1,6	8219,7
	MANÍ	0,4	2,2	382083,7
	MONTERREY	0,5	2,2	72464,9
	NUNCHIA	0,5	2,2	122817,2
	OROCUÉ	0,4	2,8	507770,2
	PAZ DE ARIPORO	0,3	1,8	1087835,8
	PORE	0,4	2,1	67965,5
	RECETOR	0,4	2,0	13729,7
	SABANALARGA	0,4	2,0	30305,3
	SACAMA	0,4	2,0	32290,9
	SAN LUIS DE	•		,
CASANARE	PALENQUE	0,4	2,4	236941,7
	TAMARA	0,2	1,5	59422,6

Departamento	Municipio		ePromedio de Número	
•	TALIDAMENIA	Heterogeneidad	de coberturas	de predio
	TAURAMENA	0,6	3,2	6183,7
	TRINIDAD	0,4	1,8	2109,7
	VILLANUEVA	0,4	2,3	9980,7
	YOPAL	0,2	1,6	214174,0
Total CASANARE		0,3	1,9	3576363,5
	ARBELÁEZ	0,5	2,0	5,3
	CÁQUEZA	0,2	1,3	11333,7
	CHIPAQUE	0,1	1,2	12424,7
	CHOACHÍ	0,1	1,3	25966,0
	CHOCONTÁ	0,3	1,7	7258,5
	FÓMEQUE	0,1	1,3	55390,0
	FOSCA	0,1	1,2	13920,4
	GACHALÁ	0,4	1,9	44596,8
	GACHETÁ	0,1	1,3	28736,5
	GAMA	0,2	1,4	8662,7
	GUASCA	0,5	2,2	16608,4
	GUATAVITA	0,4	1,9	9445,9
	GUAYABETAL	0,3	1,7	51352,6
	GUTIERREZ	0,3	1,6	37615,1
	JUNÍN	0,1	1,2	29556,8
	LA CALERA	0,2	1,3	10455,1
	MACHETÁ	0,1	1,2	18620,8
	MANTA	0,1	1,3	9533,1
	MEDINA	0,4	2,0	126317,4
	PARATEBUENO	0,4	2,0	92985,4
	PASCA	0,0	1,0	2,6
	QUETAME	0,3	1,5	12313,1
	TIBIRITA	0,3		5425,3
	UBALÁ	0,3	1,4 1,7	43112,9
	UBAQUE	0,1	1,1	8043,9
CUNDINAMARCA		0,1	1,2	13996,8
CONDINAMARCA	VILLAPINZÓN	0,1	1,2	5550,6
Total CUNDINAM		0,2	1,4	699230,5
TOTAL CONDINAM	BARRANCO MINA	0,2	10,0	535239,0
GUAINÍA	INÍRIDA	0,5	7,7	986392,7
GUAINIA	MAPIRIPANA	0,4	7,0	252419,0
Total GUAINÍA		0,4	7,5	1774050,8
TOLAL GUAINIA	SAN JOSÉ DE		7,3	1774030,0
GUAVIARE	GUAVIARE	0,5	5,8	767377,9
Total GUAVIARE	<u> </u>	0,5	5,8	767377,9

Departamento	Municipio	Promedio d Heterogeneidad	ePromedio de Número de coberturas	Suma de Área de predio
HUILA	BARAYA	0,0	1,0	806,8
Total HUILA	DAIMIA	0,0	1,0	806,8
TOTAL HOILA	ACACÍAS	0,2	1,5	95648,2
	BARRANCA DE UPIA	0,4	2,2	34121,8
	CABUYARO	0,3	2,2	82542,4
	CASTILLA LA NUEVA		2,0	52588,1
	CUBARRAL	0,2	1,4	79694,0
	CUMARAL	0,1	1,3	63103,2
	EL CALVARIO	0,4	1,8	25310,7
	EL CASTILLO	0,4	2,0	51367,9
	EL DORADO	0,3	1,7	10180,6
	FUENTE DE ORO	0,4	1,9	69082,0
	GRANADA	0,3	1,6	30055,3
	GUAMAL	0,2	1,4	14227,0
	LA MACARENA	0,5	2,4	151912,5
	LEJANÍAS	0,4	1,8	52660,9
	MAPIRIPÁN	0,6	2,7	1422648,9
	MESETAS	0,4	2,0	202946,6
	PUERTO	0,4	2,0	202740,0
	CONCORDIA	0,5	2,3	106137,4
	PUERTO GAITÁN	0,4	2,4	1928390,4
	PUERTO LLERAS	0,6	2,5	276468,4
	PUERTO LÓPEZ	0,3	1,8	710401,0
	PUERTO RICO	0,5	2,3	189924,7
	RESTREPO	0,1	1,2	21426,3
	SAN CARLOS DE	,	1,2	21120,3
	GUAROA	0,2	1,8	71479,7
	SAN JUAN DE ARAMA		2,1	101338,7
	SAN JUANITO	0,4	1,8	7759,5
	SAN MARTÍN	0,5	2,2	416025,5
	URIBE	0,8	2,6	768,1
META	VILLAVICENCIO	0,1	1,2	86425,8
	VISTAHERMOSA	0,4	2,0	214138,9
Total META		0,3	1,7	6568774,5
	CÁCOTA	0,3	1,7	16559,1
	CHINÁCOTA	0,3	1,4	94,8
	CHITAGÁ	0,3	1,7	121389,0
NORTE I	DEHERRÁN	0,2	1,5	164,5
SANTANDER	LABATECA	0,2	1,5	22473,8
	MUTISCUA	0,0	1,1	524,2

Departamento	Municipio	Promedio de Heterogeneidad	Promedio de Número de coberturas	Suma de Área de predio
	PAMPLONA	0,3	1,8	3146,7
	PAMPLONITA	0,6	2,3	507,8
	SILOS	0,2	1,5	30580,0
	TOLEDO	0,0	1,0	0,3
Total NORTE DE	SANTANDER	0,3	1,6	195440,1
	CARCASÍ	0,3	1,9	2734,5
	CERRITO	0,5	2,0	18815,7
	CHARTA	0,0	1,0	401,2
	CONCEPCIÓN	0,3	1,8	10720,6
	GUACA	0,3	1,4	3352,2
	PIEDECUESTA	0,2	1,3	47,4
SANTANDER	SANTA BARBARA	0,2	1,3	2601,4
	TONA	0,2	1,4	11508,2
Total SANTANDE	Ř	0,2	1,5	50181,0
VAUPÉS	MITÁ	0,2	2,0	2285,7
Total VAUPÉS		0,2	2,0	2285,7
	CUMARIBO	0,6	2,7	4103855,2
	LA PRIMAVERA	0,4	2,5	1737806,1
VICHADA	PUERTO CARREÑO	0,4	2,3	1058180,2
	SANTA ROSALÍA	0,3	2,1	309564,9
Total VICHADA		0,4	2,5	7209406,4

Tabla 10 Cálculo Heterogeneidad a escala Subzona Hidrográfica

	Promedio de
Subzona Hidrográfica	Heterogeneidad
Alto Guaviare	0,59
Alto Río Tomo	0,44
Alto Vichada	0,57
Bajo Guaviare	0,30
Bajo Río Tomo	0,43
Bajo Río Uvá	0,48
Bajo Vichada	0,66
Caño Aguaclarita	0,44
Caño Cumaral	0,66
Caño Guanápalo y otros directos al Meta	0,50
Caño Lioni o Terecay	0,37
Caño Samuco	0,25

	Promedio de
Subzona Hidrográfica	Heterogeneidad
Directos al Meta entre ríos Cusiana y Cravo Sur	
(mi)	0,40
Directos al Río Meta entre ríos Cusiana y Carare	n 31
(ma)	
Directos al Río Meta entre ríos Humea y Upia (mi)	
Directos al Río Meta entre ríos Pauto y Carare (mi)	0,37
Directos Bajo Meta entre ríos Casanare y Orinoco (md)	0,32
Directos Orinoco entre ríos Tomo y Meta (mi)	0,36
Directos Río Arauca (md)	0,39
Directos Rio Metica entre ríos Guayuriba y Yucao	0,25
Directos Vichada Medio	0,61
Lago de Tota	0,11
Medio Guaviare	0,56
Río Ariari	0,37
Río Ariporo	0,29
Rio Banadia y otros Directos al Río Arauca	0,37
Río Bojabá	0,43
Río Casanare	0,37
Río Chítaga	0,25
Río Cinaruco y Directos Río Orinoco	0,37
Río Cobugón - Río Cobaría	0,50
Río Cravo Norte	0,45
Río Cravo Sur	0,38
Río Cusiana	0,29
Río Elvita	0,49
Río Garagoa	0,15
Río Guacavía	0,32
Río Guape	0,43
Río Guarrojo	0,34
Río Guatiquía	0,13
Río Guavio	0,22
Río Guayabero	0,69
Río Guayuriba	0,15
Río Guejar	0,45

	Promedio de
Subzona Hidrográfica	Heterogeneidad
Río Humea	0,38
Río Iteviare	0,44
Río Lengupá	0,39
Rio Losada	0,51
Río Manacacias	0,44
Río Margua	0,56
Río Melúa	0,69
Rio Metica (Guamal - Humadea)	0,23
Río Muco	0,51
Río Negro	0,08
Río Papunaya	0,17
Río Pauto	0,32
Río Siare	0,45
Río Túa y otros directos al Meta	0,42
Río Tuparro	0,56
Río Upía	0,37
Río Bita	0,41
Río Yucao	0,53

2.2. Principio Productividad

- 2.2.1. Indicador Oferta de Servicios ecosistémicos
- 2.2.1.1. Aproximación desde el Plan Estratégico de la Macrocuenca del Orinoco (PEMO)

Se evaluó, calificó y categorizó la prestación de cada uno de los SE relacionados con el recurso hídrico en la macrocuenca del Orinoco, presentados en la tabla anterior, según como se muestra a continuación:

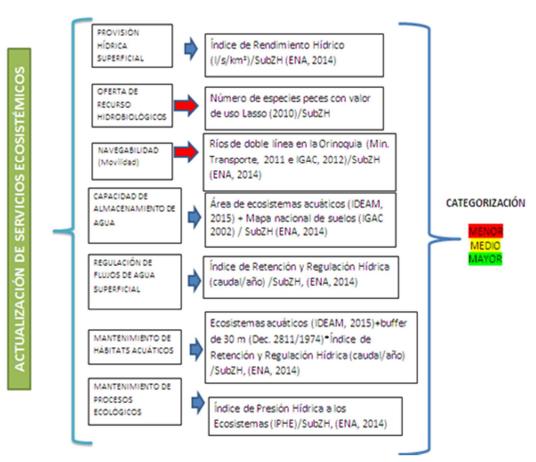


Figura 17 Metodología y variables utilizadas para evaluar, calificar y categorizar los SE que presta la macrocuenca Orinoco, relacionados con el recurso hídrico (fuente este estudio).

2.2.1.2. Aproximación desde el modelo de simulación basado en el enfoque de dinámica de sistemas, para ser utilizado como herramienta de análisis y evaluación de tendencias del comportamiento de los agroecosistemas ganaderos en relación con la oferta de servicios ecosistémicos en la Orinoquia colombiana (Molina R., Redondo J.M., Bustamante C.).

Descripción del submodelo provisión de agua

La cantidad de agua que presenten los suelos es una de las características más importantes, ya que interviene en la nutrición de las plantas, actuando como vehículo de los elementos nutritivos disueltos y, por otro lado, condiciona la mayoría de los procesos de formación de suelo. La cantidad de agua en los suelos está determinada, fundamentalmente, por su textura, su contenido de materia orgánica y la composición de sus fracciones mineral y orgánica; por el ingreso natural a través de las lluvias o el ingreso artificial a través del riego, así como por el flujo de salida causado por el proceso de evapotranspiración (Jaramillo, 2002).

Para la construcción del submodelo, se tuvieron en cuenta las siguientes variables: %arena, %limo, %arcilla, densidad aparente, densidad real, porosidad, materia orgánica, capacidad de campo, punto de marchitez permanente, precipitación, temperatura, humedad relativa, entre otras. Con el uso de estas variables se pudo elaborar un diagrama de niveles y flujos (Figura 2), capaz de simular el comportamiento del agua en el suelo.

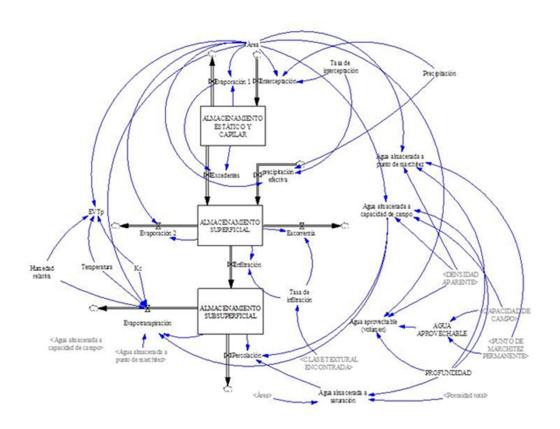


Figura 18 Representación del servicio ecosistémico "provisión de agua" mediante niveles, flujos y variables auxiliares relacionadas con su dinámica.

Para la construcción del modelo matemático provisión de agua, a continuación, se describe cada una de las ecuaciones que conforman la estructura del modelo:

Niveles

```
ALMACENAMIENTO ESTÁTICO Y CAPILAR (t) \\ = ALMACENAMIENTO ESTÁTICO Y CAPILAR (0) \\ + \int_0^t \left(Interceptación (t) = Evaporación 1 (t) = Excedentes(t)\right) dt \\ ALMACENAMIENTO SUPERFICIAL (t) \\ = ALMACENAMIENTO SUPERFICIAL (0) \\ + \int_0^t (Excedentes (t) + Precipitación efectiva(t) - Evaporación 2 (t) \\ - Escorrentía(t) - Infiltración(t)) dt \\ ALMACENAMIENTO SUBSUPERFICIAL (t) \\ = ALMACENAMIENTO SUBSUPERFICIAL (0) \\ + \int_0^t \left(Infiltración (t) - Evapotranspiración (t) - Percolación(t)\right) dt \\ \end{aligned}
```

Flujos

```
Interceptación = (Precipitación * Tasa de interceptación) * 10 * Área
  Evaporación1 = MIN( 120 * 10 * Área, ALMACENAMIENTO ESTÁTICO Y CAPILAR)
     Excedentes = MIN( ALMACENAMIENTO ESTÁTICO Y CAPILAR
                 - Evaporación 1, ALMACENAMIENTO ESTÁTICO Y CAPILAR)
  Precipitación efectiva = (Precipitación * (1 - Tasa de interceptación)) * 10 * Área
      Evaporación2 = MIN( 120 * 10 * Área, ALMACENAMIENTO SUPERFICIAL)
      Escorrentía = MIN( ALMACENAMIENTO SUPERFICIAL * (1
                  - Tasa de infiltración). ALMACENAMIENTO SUPERFICIAL)
      Infiltración = MIN( ALMACENAMIENTO SUPERFICIAL
                   *Tasa de infiltración, ALMACENAMIENTO SUPERFICIAL)
Evapotranspiración = MIN(IFTHEN ELSE(ALMACENAMIENTO SUBSUPERFICIAL
> Agua almacenada a punto de marchitez: AND: ALMACENAMIENTO SUBSUPERFICIAL
< Agua almacenada a capacidad de campo
   ,(((0.0018*(25+Temperatura)^2*(100-Humedad relativa))*Kc)/30)*10
                * Área.0).ALMACENAMIENTO SUBSUPERFICIAL)
Percolación = MIN(IFTHEN ELSE(ALMACENAMIENTO SUBSUPERFICIAL
> Agua almacenada a capacidad de campo: AND: ALMACENAMIENTO SUBSUPERFICIAL
< Agua almacenada a saturación
ALMACENAMIENTO SUBSUPERFICIAL
- Agua almacenada a capacidad de campo.0). ALMACENAMIENTO SUBSUPERFICIAL)
```


Variables auxiliares

```
Agua almacenada a punto de marchitez

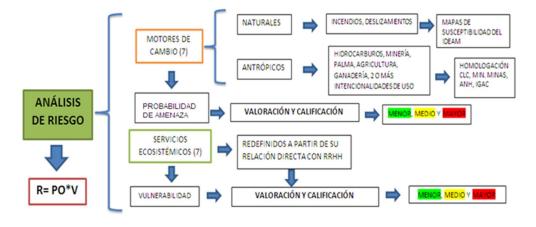
= (PUNTO DE MARCHITEZ PERMANENTE/100)

• (DENSIDAD APARENTE/1) • (PROFUNDIDAD/100) • 10000 • Área

Agua almacenada a capacidad de campo

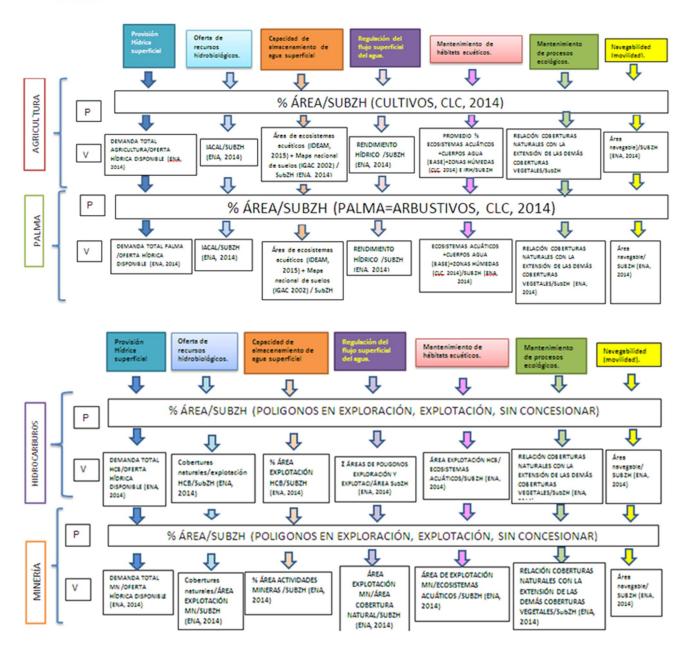
= (CAPACIDAD DE CAMPO/100) • (DENSIDAD APARENTE/1)

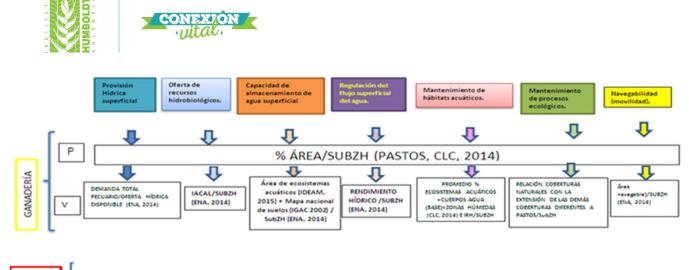
• (PROFUNDIDAD/100) • 10000 • Área


Agua almacenada a saturación

= (Porosidad total/100) • (PROFUNDIDAD/100) • 10000 • Área
```

2.2.2. Indicador Redundancia (Riesgo de pérdida de servicios ecosistémicos SE como proxy)


El análisis de riesgo de pérdida de los SE, se realizó para cada uno de los siete SE respecto a cada uno de los motores de cambio. Así mismo, se evaluó el riesgo de dos motores de cambio naturales (riesgos por susceptibilidad a incendios y por susceptibilidad a deslizamientos y remoción en masa según los datos del IDEAM), y las dos o más intencionalidades de uso del territorio orinocense.


La valoración y categorización del riesgo se hizo teniendo en cuenta la multiplicación de la probabilidad de amenaza del motor de cambio con la vulnerabilidad del SE.

2 O MÁS INTECIONALIDADES DE USO

- ÁREAS PROTEGIDAS(PNN. 2015)
- ARROZ (CLC. 2014)
- OTROS CULTIVOS DIFERENTES A PALMA Y ARROZ (CLC, 2014)
- (CLC, 2014)
 DISTRITO DE CONSERVACIÓN DE SUELOS (2016)
 DISTRITO REGIONAL DE MANEJO (2016)
 TIERRAS EN EXPLOTACIÓN DE HIDROCARBUROS
- (ANH. 2016) (ANC), 2016) LÍNEAS DE ALTA TENSIÓN (2013) TÍTULOS MINEROS EN EJECUCIÓN (MIN. MINAS, 2016) PALMA (CLC, 2014)

- PARQUES NACIONALES REGIONALES
- ÁREAS CON POTENCIAL FORESTAL
- COMERCIAL (UPRA, 2015) ÁREAS PRIORITARIAS DE CONSERVACIÓN
- (2015) PROYECTOS ELÉCTRICOS (2013) RESERVAS DE SOCIEDAD CIVIL (2016) RESGUARDOS INDÍGENAS (MIN. INTERIOR,

Figura 19 Análisis de riesgo

2.3 Principio Bienestar

2.3.1. Indicador Integridad Ecológica

La fuente de este indicador es el proyecto Identificación de áreas prioritarias y aproximaciones de conservación y manejo del territorio en las zonas operativas de Ecopetrol - Planeación Ambiental para la conservación de la biodiversidad en las áreas operativas de Ecopetrol (González M. F et al Instituto Humboldt Ecopetrol 2015).

Con el objeto de cuantificar métricas del paisaje para el área de estudio se analizaron índices a nivel de fragmentos. Para este estudio se aplicaron cuatro métricas a cada conjunto de fragmentos de la misma clase de cobertura utilizando el software Fragstats 4.1 creado por la Universidad de Massachusetts (McGarigal et al., 2002).

Este análisis permite explicar, de manera integral, la integridad ecológica de los fragmentos (Hernández-Manrique & Hurtado, 2012), que para este caso por el grado de intervención del paisaje lo llamaremos integridad. Dentro de los índices analizados se encuentran: ➤ Área total del fragmento (ÁREA), definido como el área en hectáreas de cada fragmento: los fragmentos con mayor área son los más funcionales y, por lo tanto, los más favorables para la conservación. ➤ Área núcleo del fragmento (CORE), en hectáreas: a mayor área núcleo, mayor probabilidad de que los fragmentos persistan en el

tiempo, a pesar de la presión antrópica circundante. ➤ Forma (SHAPE): permite determinar qué tan regular o irregular es la forma de un fragmento determinado, mediante valores a partir de 1, siendo 1 la mejor forma, o sea aquella coincidente con un círculo. En consecuencia, los valores bajos corresponden a fragmentos más aglomerados, que cuentan con formas más regulares y, por lo tanto, son considerados más favorables para la conservación. Se ajustó esta métrica así FORMA = (1/SHAPE)*CORE ➤ Índice de proximidad (PROX): a mayor valor de este índice, más proximidad o continuidad entre los fragmentos de su tipo. En primer lugar, los valores obtenidos para cada una de estas cuatro métricas se organizan en tres rangos (alto, medio y bajo), usando el método estadístico de cuartiles para lo cual se eliminaron los datos atípicos, según su calidad en términos de integridad ecológica y, por lo tanto, de favorabilidad para la conservación.

En esta clasificación la métrica FORMA (SHAPE) se utiliza de manera compuesta, tomando su inverso multiplicado por el área núcleo del fragmento, con el objetivo de atenuar su peso relativo en la valoración de la integridad. Luego las cuatro métricas seleccionadas se re-organizan en dos ejes perpendiculares para su combinación, agrupadas en dos grupos: Grupo A compuesto por área y área núcleo; y Grupo B compuesto por forma y proximidad, según los rangos de clasificación. Finalmente, estas combinaciones se clasifican en una matriz, asignándoles valores de 1 a 5, para obtener cinco niveles de integridad (Tabla 9; donde 5 corresponde a la mayor integridad y 1 a la menor).

2.3.2. Indicador Probabilidad de Colapso

La fuente de este indicador es el proyecto Identificación de áreas prioritarias y aproximaciones de conservación y manejo del territorio en las zonas operativas de Ecopetrol - Planeación Ambiental para la conservación de la biodiversidad en las áreas operativas de Ecopetrol (González M.F.et al Instituto Humboldt Ecopetrol 2015).

Se entiende como probabilidad de colapso el posible cambio o transformación al que están sometidos los ecosistemas debido a una alteración en su estabilidad y diversidad lo que causa una reducción en su capacidad de proveer servicios ecosistémicos, resiliencia y su efecto amortiguador, al igual que su resistencia a la invasión y otros atributos funcionales (MacDougall *et al.* 2013). Colapso no indica la desaparición del sistema, lo que indica es una transformación del ecosistema original en un socio-ecosistema dominado por actividades y creaciones antrópicas (Mendenhall *et al.* 2014).

Para calcular la probabilidad de colapso se tuvo en cuenta que la interacción entre amenazas y vulnerabilidades no es siempre la misma, ya que depende del tipo y origen de la amenaza, al igual que de las características intrínsecas de cada UAT y SZH, para reaccionar ante la amenaza. Por esta razón se desarrollaron varios algoritmos para el cálculo de riesgo de pérdida de biodiversidad basados en las relaciones encontradas entre las variables.

2.4 Análisis de sostenibilidad

Aproximación 1

Tabla 11 Aproximación 1

	i abia	11 Aproximacion i		
Nombre Cuenca	sostenibilida	ia ponderacion	ia ponderacion de sostenibilidad	n
Río Inírida Alto	8	0,08	1	Muy baja
Río Inírida Medio	4	0,04	1	Muy baja
Río Papunaya	4	0,04	1	Muy baja
Caño Nabuquén	64	0,67	5	Alta
RInírida_(mi),_ hasta_bocas_Caño_ Bocón, _y_R Las Viñas	4	0,04	1	Muy baja
Caño Bocón	4	0,04	1	Muy baja
Río Guayabero	32	0,33	3	Media
Río Guape	32	0,33	3	Media
Rio Losada	6	0,06	1	Muy baja
Alto Guaviare	8	0,08	1	Muy baja
Río Ariari	48	0,50	4	Muy Alta
Río Guejar	24	0,25	2	Baja
Medio Guaviare	48	0,50	4	Muy Alta
Río Siare	32	0,33	3	Media
Río Iteviare	64	0,67	5	Alta
Bajo Guaviare	32	0,33	3	Media
Caño Minisiare	1	0,01	1	Muy baja
Alto Río Uvá	16	0,17	2	Baja
Bajo Río Uvá	4	0,04	1	Muy baja
Caño Chupabe	2	0,02	1	Muy baja
Alto Vichada	32	0,33	3	Media
Río Guarrojo	32	0,33	3	Media
Río Muco	48	0,50	4	Muy Alta
Directos Vichada Medio	12	0,13	1	Muy baja
Bajo Vichada	12	0,13	1	Muy baja
	Río Inírida Alto Río Inírida Medio Río Papunaya Caño Nabuquén RInírida_(mi),_ hasta_bocas_Caño_ Bocón, _y_R Las Viñas Caño Bocón Río Guayabero Río Guaye Rio Losada Alto Guaviare Río Ariari Río Guejar Medio Guaviare Río Siare Río Iteviare Bajo Guaviare Caño Minisiare Alto Río Uvá Bajo Río Uvá Caño Chupabe Alto Vichada Río Guarrojo Río Muco Directos Vichada Medio	Nombre Cuenca Río Inírida Alto Río Inírida Medio Río Papunaya Caño Nabuquén RInírida_(mi),_ hasta_bocas_Caño_ Bocón, _y_R Las Viñas Caño Bocón Río Guayabero Río Guayabero Río Guaviare Río Ariari Río Guejar Medio Guaviare Río Siare Río Siare Bajo Guaviare Alto Río Uvá Bajo Río Uvá Caño Chupabe Alto Vichada Río Guarrojo Río Guarrojo Río Guarrojo Río Uvá Río Guarrojo Río Guarrojo Río Guarrojo Río Guarrojo Río Muco Alto Vichada Medio	Nombre Cuenca Ponderación de sostenibilidad de	Nombre Cuenca de sostenibilida de sostenibilida a ponderación de sostenibilidad de sostenibilidad sostenibilida

Cod	Nombre Cuenca	coctonibilida	Normalización de la ponderación de sostenibilidad	la ponderacion de sostenibilidad	n
	Alto Río Tomo	32	0,33	3	Media
	Río Elvita	2	0,02		Muy baja
3403	Bajo Río Tomo	4	0,04	1	Muy baja
3405	Caño Lioni o Terecay	2	0,02	1	Muy baja
コくりほし	Rio Metica (Guamal - Humadea)	24	0,25	2	Baja
3502	Río Guayuriba	48	0,50	4	Muy Alta
3503	Río Guatiquía	36	0,38	3	Media
3504	Río Guacavía	12	0,13	1	Muy baja
3505	Río Humea	24	0,25	2	Baja
3506	Río Guavio	12	0,13	1	Muy baja
3507	Río Garagoa	12	0,13	1	Muy baja
3508	Río Lengupá	24	0,25	2	Baja
3509	Río Upía	24	0,25	2	Baja
3510	Río Negro	48	0,50	4	Muy Alta
3511	Directos Rio Metica entre ríos Guayuriba y Yucao		0,50	4	Muy Alta
3512	Río Yucao	48	0,50	4	Muy Alta
3513	Río Melúa	48	0,50	4	Muy Alta
3514	Caño Cumaral	16	0,17	2	Baja
3515	Río Manacacias	32	0,33	3	Media
3516	Lago de Tota	24	0,25	2	Baja
3518	Río Túa y otros directos al Meta	96	1,00	6	Muy Alta
3519	Río Cusiana	24	0,25	2	Baja
3520	Directos al Meta entre ríos Cusiana y Cravo Sur	16	0,17		Baja
3521	Río Cravo Sur	12	0,13	1	Muy baja
3522	Caño Guanápalo y otros directos al Meta	16	0,17	2	Baja

	Nombre Cuenca	sostenibilida d	de sostenibilidad	la ponderación de sostenibilidad	n sostenibilidad por cuenca
			0,25	2	Baja
3524	ríos Pauto y Carare	16	0,17	2	Baja
3525	Directos Bajo Meta entre ríos Casanare y Orinoco	4	0,04	1	Muy baja
3526	Directos al Río Meta entre ríos Cusiana y Carare	3	0,03	1	Muy baja
3527	Directos al Río Meta entre ríos Humea y Upia (mi)	12	0,13	1	Muy baja
3601	Río Ariporo	48	0,50	4	Muy Alta
3602	Río Casanare	12	0,13	1	Muy baja
3603	Río Cravo Norte	24	0,25	2	Baja
3604	Caño Samuco	16	0,17	2	Baja
3605	Caño Aguaclarita	16	0,17	2	Baja
3701	Río Chítaga	24	0,25	2	Baja
3702	Río Margua	48	0,50	4	Muy Alta
3703	Río Cobugón - Río Cobaría	72	0,75	5	Alta
3704	Río Bojabá	24	0,25	2	Baja
3/05	Directos al Rio Arauca		0,25	2	Baja
3706	Directos Río Arauca (md)	32	0,33	3	Media
3801	Río Bita	4	0,04	1	Muy baja
3802	Río Tuparro	8	0,08	1	Muy baja
		4	0,04	1	Muy baja
3804	Directos Río Atabapo (mi)	12	0,13	1	Muy baja

Cod			Normalización de la ponderación de sostenibilidad		Categorizació n sostenibilidad por cuenca
3805	Directos Orinoco entre ríos Tomo y Meta (mi)	4	0,04	1	Muy baja
3809	Río Cinaruco y Directos Río Orinoco	16	0,17	2	Baja
3901	Alto Río Apure	32	0,33	3	Media

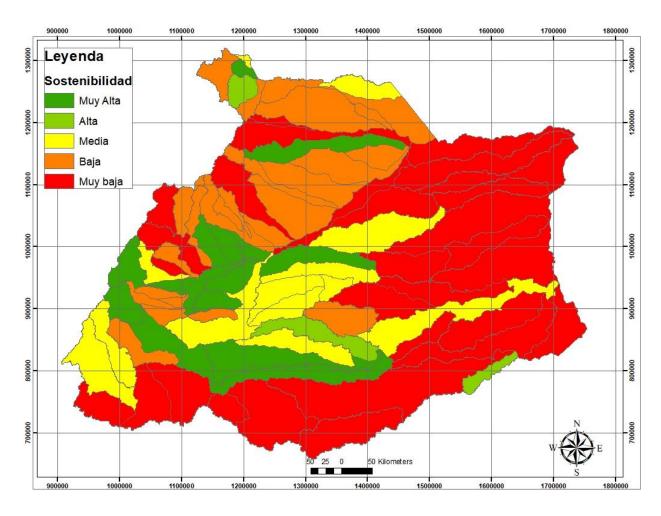


Figura 20 Mapa de sostenibilidad para las cuencas aproximación 1.

Aproximación 2

Tabla 12 Aproximación 2

		Tabla 12 /	Aproximacion 2		
А	NOM_CUENCA	Ponderación de sostenibilidad	de la ponderación de sostenibilidad	nonderación	Categorización de la sostenibilidad por cuenca
3101	Río Inírida Alto	0	0,0	1	Muy baja
3104	Río Inírida Medio	4	0,1	1	Muy baja
3105	Río Papunaya	4	0,1	1	Muy baja
3107	Caño Nabuquén	32	0,5	4	Muy Alta
	RInírida_(mi),_hast a_bocas_Caño_Bocón, _y_RLas Viñas	2	0,0	1	Muy baja
3110	Caño Bocón	4	0,1	1	Muy baja
3201	Río Guayabero	48	0,8	5	Alta
3202	Río Guape	32	0,5	4	Muy Alta
3203	Rio Losada	4	0,1	1	Muy baja
3204	Alto Guaviare	8	0,1	1	Muy baja
3206	Río Ariari	32	0,5	4	Muy Alta
3207	Río Guejar	16	0,3	2	Baja
3210	Medio Guaviare	32	0,5	4	Muy Alta
3212	Río Siare	32	0,5	4	Muy Alta
3213	Río Iteviare	64	1,0	6	Muy Alta
3214	Bajo Guaviare	32	0,5	4	Muy Alta
3215	Caño Minisiare	1	0,0	1	Muy baja
3216	Alto Río Uvá	16	0,3	2	Baja
3217	Bajo Río Uvá	4	0,1	1	Muy baja
3218	Caño Chupabe	2	0,0	1	Muy baja
3301	Alto Vichada	32	0,5	4	Muy Alta
3302	Río Guarrojo	32	0,5	4	Muy Alta
3303	Río Muco	32		4	Muy Alta
14405	Directos Vichada Medio	8	0,1	1	Muy baja
3306	Bajo Vichada	12	0,2	2	Baja
3401	Alto Río Tomo	32	0,5	4	Muy Alta
3402	Río Elvita	2	0,0	1	Muy baja
3403	Bajo Río Tomo	4	0,1	1	Muy baja

A	NOM_CUENCA	Ponderación de sostenibilidad	Normalizacion de la ponderación de sostenibilidad	ponderación	
3405	Caño Lioni o Terecay	4	0,1	1	Muy baja
	Rio Metica (Guamal - Humadea)		0,1	1	Muy baja
	Río Guayuriba		0,3	2	Baja
	Río Guatiquía		0,2	2	Baja
3504	Río Guacavía	8	0,1	1	Muy baja
3505	Río Humea		0,3	2	Baja
	Río Guavio		0,1	1	Muy baja
	Río Garagoa		0,1	1	Muy baja
	Río Lengupá		0,3	2	Baja
3509	Río Upía	16	0,3	2	Baja
3510	Río Negro	16	0,3	2	Baja
	Directos Rio Metica entre ríos Guayuriba y Yucao	16	0,3	2	Baja
3512	Río Yucao	32	0,5	4	Muy Alta
3513	Río Melúa	48	0,8	5	Alta
3514	Caño Cumaral	24	0,4	3	Media
3515	Río Manacacias	32	0,5	4	Muy Alta
3516		8	0,1	1	Muy baja
13518	Río Túa y otros directos al Meta	64	1,0	6	Muy Alta
3519	Río Cusiana	8	0,1	1	Muy baja
3520	Directos al Meta entre ríos Cusiana y Cravo Sur		0,3	2	Baja
3521			0,1	1	Muy baja
3522	otros directos at meta		0,3	2	Baja
3523	Río Pauto	16	0,3	2	Baja
3524	Directos al Río Meta entre ríos Pauto y Carare		0,3	2	Ваја

А	NOM_CUENCA	Ponderación de sostenibilidad	Normalizacion de la ponderación de	nonderación	por cuenca
3525	Directos Bajo Meta entre ríos Casanare y Orinoco		0,1	1	Muy baja
3526	Directos al Río Meta entre ríos Cusiana y Carare	1	0,0	1	Muy baja
3527	Directos al Río Meta entre ríos Humea y Upia (mi)		0,1	1	Muy baja
3601	Río Ariporo	16	0,3	2	Baja
	Río Casanare		0,1	1	Muy baja
3603	Río Cravo Norte	16	0,3	2	Baja
	Caño Samuco		0,3	2	Baja
3605	Caño Aguaclarita	32	0,5	4	Muy Alta
3701	Río Chítaga	8	0,1	1	Muy baja
3702	Río Margua	32	0,5	4	Muy Alta
3703	Río Cobugón - Río Cobaría	48	0,8	5	Alta
3704	Río Bojabá	16	0,3	2	Baja
	Rio Banadia y otros Directos al Río Arauca		0,3	2	Baja
3706	Directos Río Arauca (md)	32	0,5	4	Muy Alta
3801	Río Vita	4	0,1	1	Muy baja
3802	Río Tuparro	8	0,1	1	Muy baja
3803	Caño Matavén	2	0,0	1	Muy baja
3804	Directos Río Atabapo (mi)	4	0,1	1	Muy baja
3805	Directos Orinoco entre ríos Tomo y Meta (mi)	4	0,1	1	Muy baja
13800	Río Cinaruco y Directos Río Orinoco	32	0,5	4	Muy Alta

CODIGO _CUENO A	NOM CLIENCA	Ponderación de sostenibilidad	Normalización de la ponderación de sostenibilidad	ponderación	Categorización de la sostenibilidad por cuenca
3901	Alto Río Apure	16	0,3	2	Baja

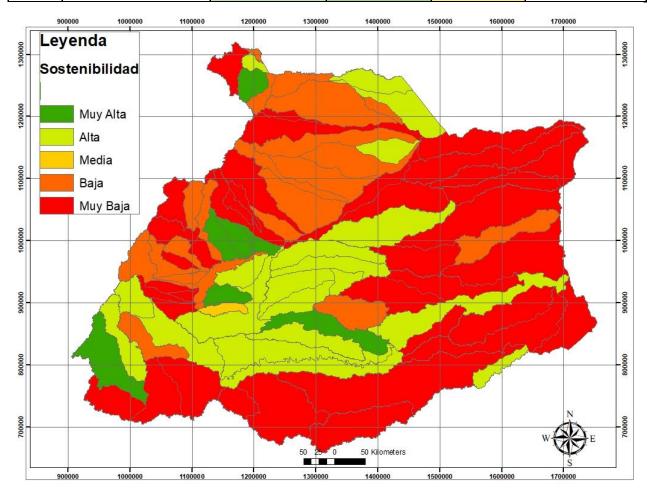


Figura 21 Mapa de sostenibilidad para las cuencas aproximación 2.

Las dos aproximaciones difieren en la forma en que se genera el indicador de heterogeneidad, que, como se mencionó en 2.1.1.1 de un lado parte de analizar la forma como se distribuye la cobertura en las subzonas hidrográficas (cuencas) y por el otro, responde a una reclasificación de esta (2.1.1.2), de acuerdo a su distribución predial y asociada a usos agropecuarios.

Los principales cambios se dieron de la siguiente manera:

Tabla 13 Cambios entre aproximaciones

Subzona Hidrográfica (Cuenca)	Cambio entre
	aproximación 1 y 2
Muco	Descendió
Chítaga	Descendió
Margua	Descendió
Cinaruco	Descendió
Cusiana	Descendió
Guayuriba	Descendió
Ariari	Descendió
Directos Río Metica entre Guayuriba y Yucao	Descendió
Yucao	Descendió
Ariporo	Descendió
Nabuquén	Descendió
Guayabero	Descendió
Guaviare	Descendió
Aguaclarita	Ascendió
Iteviare	Ascendió
Bajo Vichado	Ascendió

Aquí es importante resaltar que el énfasis que da la aproximación 2 a la relación (presencia conjunta en predios) entre coberturas naturales y antrópicas, permite, de manera más fluida y entendiendo a partir de las bases de datos los usos y sistemas productivos agropecuarios que se relacionan con los estados más bajos de sostenibilidad (ver Tabla 14) y los indicadores específicos que condicionan este estado, generar lineamientos específicos que los atiendan de manera integral, inclusive, por predio como lineamiento general, dado que, por la escala, si se quieren abordar predios, este análisis debe llevarse a cabo con información mucho más detallada.

Tabla 14 Categorías de sostenibilidad de la aproximación inicial de sistemas de producción, por Subzona hidrográfica como unidad de análisis

Cod .	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + Pastos	4411,3	
		A. Heterogéneas + Pastos + Naturales	190563,6	-
	Alto Guaviare	_	1197280,	-
320	Allo Guaviare	A. Heterogéneas + A. Naturales	9	4
4		Pastos + A. Naturales	34159,1	1
		Otros	3400,2	-
	Total Alto Guaviare		1429815,	-
			2	

Alto Rio Tomo	Cod	NOMSZH	Clasificación	Total	Sostenibilidad
Alto Río Tomo	•				
Pastos + A. Naturales					
1	340	Alto Río Tomo			
Otros			1 astos - A. Naturates	-	4
Total Alto Río Tomo			Otros	6	
Alto Río Uvá		Total Alto Río To	mo	3	
Total Alto Río Uvá	221	Alto Río Uvá	A. Heterogéneas + A. Naturales		
Total Alto Río Uvá			Otros	35345,2	2
A. Heterogéneas + Cultivos + Naturales	0	Total Alto Río Uv	á	,	
A. Heterogéneas + Cultivos + Naturales			Cultivos + A. Naturales	31807,2	
A. Heterogéneas + Pastos + Naturales 748,5			A. Heterogéneas + Cultivos + Naturales		
A. Heterogéneas + A. Naturales 6 Pastos + A. Naturales 90718,1 A. Heterogéneas + Cultivos + pastos + 3133,5 A. Naturales 64947,0 Otros 2 Total Alto Vichada Bajo Guaviare A. Heterogéneas + A. Naturales 64947,0 Otros 2 Total Bajo Guaviare A. Heterogéneas + A. Naturales 0 Otros 59296,5 Total Bajo Guaviare A. Heterogéneas + A. Naturales 0 Otros 59296,5 Total Bajo Guaviare 6 A. Heterogéneas + A. Naturales 8 Pastos + A. Naturales 74628,0 A. Naturales + Degradadas 1757,2 Otros 975792,4 Total Bajo Río Tomo Total Bajo Río Tomo Bajo Río Uvá A. Heterogéneas + A. Naturales 74628,0 A. Naturales + Degradadas 1757,2 Otros 975792,4 Total Bajo Río Tomo A. Heterogéneas + A. Naturales 74628,0 A. Naturales + Degradadas 1757,2 Otros 975792,4 Total Bajo Río Uvá A. Heterogéneas + A. Naturales 0 Pastos + A. Naturales 574,3				748,5	
Alto Vichada				2994523,	
A. Heterogéneas + Cultivos + pastos + 3133,5 A. Naturales A. Naturales + Degradadas A. Naturales + Degradadas 64947,0 1455349, 2 Total Alto Vichada A. Heterogéneas + A. Naturales Otros Total Bajo Guaviare A. Heterogéneas + A. Naturales Otros Total Bajo Guaviare A. Heterogéneas + A. Naturales Otros Total Bajo Río Tomo A. Heterogéneas + A. Naturales Pastos + A. Naturales A. Heterogéneas + A. Naturales Postos + A. Naturales Total Bajo Río Tomo A. Heterogéneas + A. Naturales Pastos + A. Naturales Total Bajo Río Tomo A. Heterogéneas + A. Naturales Pastos + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá A. Heterogéneas + A. Naturales Otros Total Bajo Río Uvá		Alto Vichada			
A. Heterogeneas + Cultivos + pastos + Naturales A. Naturales + Degradadas A. Naturales + Degradadas 64947,0 1455349, 2 7	330		Pastos + A. Naturales	90718,1	
Otros 1455349, 2	_			3133,5	4
Otros 1455349, 2			A. Naturales + Degradadas	64947,0	
Total Alto Vichada 321 Bajo Guaviare A. Heterogéneas + A. Naturales 0 0 0 0 0 0 0 0 0			-		
321 4 Bajo Guaviare A. Heterogéneas + A. Naturales 0 0 0 0 0 0 0 0 0		Otros			
Bajo Guaviare		Total Alto Vichada		6	
Total Bajo Guaviare			_	,	
Total Bajo Guaviare	321	Bajo Guaviare		J	
Total Bajo Guaviare			Otros		4
340 Bajo Río Tomo A. Heterogéneas + A. Naturales 9763535, 8 Pastos + A. Naturales 74628,0 A. Naturales + Degradadas 1757,2 Otros 975792,4 Total Bajo Río Tomo 10815713, 4 Bajo Río Uvá A. Heterogéneas + A. Naturales 0 Pastos + A. Naturales 574,3	-	,		1 2	
340 Bajo Río Tomo A. Heterogéneas + A. Naturales 8 Pastos + A. Naturales 74628,0 A. Naturales + Degradadas 1757,2 Otros 975792,4 Total Bajo Río Tomo 10815713 A. Heterogéneas + A. Naturales 0 Pastos + A. Naturales 0 Pastos + A. Naturales 574,3		Guaviare			
Pastos + A. Naturales 74628,0 A. Naturales + Degradadas 1757,2 Otros 975792,4 10815713 A. Heterogéneas + A. Naturales Degradadas 1478562, Otros Otros			A Hatawayánasa . A Nationalas	·	
340 A. Naturales + Degradadas 1757,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Bajo Río Tomo			
Otros 975792,4 Total Bajo Río Tomo 10815713 321 A. Heterogéneas + A. Naturales 1478562, 7 Pastos + A. Naturales 0 Pastos + A. Naturales 574,3	340				1
Total Bajo Río Tomo 10815713 ,4 1478562, 0 Pastos + A. Naturales 574,3			-		1
Total Bajo Rio Tomo			Otros		
321 Bajo Río Uvá A. Heterogéneas + A. Naturales 0 Pastos + A. Naturales 574,3		Total Bajo Río Tomo			
321 7Bajo Río UváA. Heterogéneas + A. Naturales01Pastos + A. Naturales574,3					
Pastos + A. Naturales 574,3	321	_	Δ Heterogéneas + Δ Naturales		
		Bajo Río Uvá			1
	-				

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
	Total Bajo Río Uv	á	1514481, 5	
330 6	Bajo Vichada	A. Heterogéneas + A. Naturales Pastos + A. Naturales Otros	2406128, 6 6884,2 326870,7	2
	Total Bajo Vichad	a	2739883, 5	
360 5	Caño Aguaclarita Total Caño Aguac	Pastos + A. Naturales Otros larita	212495,3 157929,3 370424,6	4
321	Caño Chupabe	A. Heterogéneas + A. Naturales	2696179, 8	1
8	Total Caño Chupa	be	2696179, 8	
351 4	Caño Cumaral	A. Heterogéneas + A. Naturales Pastos + A. Naturales A. Naturales + Degradadas Otros	58254,2 58140,8 7627,2 253409,5	3
	Total Caño Cuma		377431,7	-
		Cultivos + A. Naturales Plantaciones + A. Naturales Pastos + A. Naturales + Plantaciones A. Heterogéneas + Cultivos A. Heterogéneas + Cultivos + Naturales A. Heterogéneas + Pastos	3902,8 1924,9 9819,0 33,5 2133,4 2169,0	
352 2	Caño Guanápalo y otros directos al Meta	A. Heterogéneas + Pastos + Naturales A. Heterogéneas + A. Naturales A. Heterogéneas + Cultivos + pastos Pastos + A. Naturales A. Heterogéneas + Cultivos + pastos +	27416,2 132585,4 819,5 314239,2	2
		Naturales Cultivos + Pastos A. Naturales + Degradadas Cultivos + Pastos + A. Naturales Cultivos + Pastos + A. Naturales	15520,5 1008,9 139,7 37348,0 2409,0	
	Pastos + Plantaciones Otros Total Caño Guanápalo y otros directos al Meta		749,9 210637,0 762855,8	
340 5	Caño Lioni o Terecay	Cultivos + A. Naturales A. Heterogéneas + A. Naturales	2554,2 1090566, 6	1

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		Pastos + A. Naturales	50499,6	
		A. Naturales + Degradadas	11572,8	
		Otros	774729,0	
	Total Caño Lioni d	o Terecay	1929922, 1	
380	Caño Matavén	A. Heterogéneas + A. Naturales	1866604, 2	1
3	Total Caño Matav	én	1866604, 2	
321	Caño Minisiare	A. Heterogéneas + A. Naturales	143287,5	1
5	Total Caño Minisia	are	143287,5	1
340	Caña Camura	Pastos + A. Naturales	3087,7	
360	Caño Samuco	Otros	153674,4	2
4	Total Caño Samuo	20	156762,1	
		Cultivos + A. Naturales	6983,0	
		A. Heterogéneas + Cultivos	38,0	
		A. Heterogéneas + Cultivos + Naturales	1019,9	
	Directos al Meta entre ríos Cusiana y Cravo Sur (mi)	A. Heterogéneas + Pastos	695,8	
		A. Heterogéneas + Pastos + Naturales	2597,8	
			31296,2	
352		A. Heterogéneas + Cultivos + pastos	281,1	
		Pastos + A. Naturales	37793,7	2
0		A. Heterogéneas + Cultivos + pastos + Naturales	1906,4	
		A. Heterogéneas + Pastos + Plantaciones	126,9	
		Cultivos + Pastos	232,8	
		Cultivos + Pastos + A. Naturales	3061,1	
		Otros	274486,2	
	Total Directos al	Meta entre ríos Cusiana y Cravo Sur (mi)	360519,0	
		Pastos + A. Naturales + Plantaciones	9216,6	
		A. Heterogéneas + Cultivos + Naturales	5159,8	
		A. Heterogéneas + Pastos	7,7	
	D:	A. Heterogéneas + Pastos + Naturales	2079,4	
	Directos al Río	A. Heterogéneas + A. Naturales	164688,7	
352	Meta entre ríos	Pastos + A. Naturales	586238,0	
6	Cusiana y Carare (md)	A. Heterogéneas + Cultivos + pastos + Naturales	1994,7	1
		Cultivos + Pastos + A. Naturales	355,6	
		Cultivos + Pastos + A. Naturales	658,2	
		Otros	52790,8	
	Total Directos al	Río Meta entre ríos Cusiana y Carare (md)	823189,7	
		Cultivos + A. Naturales	6674,4	1

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + Cultivos + Naturales	3869,1	
		A. Heterogéneas + Pastos	6033,4	
		A. Heterogéneas + Pastos + Naturales	28465,9	
		A. Heterogéneas + A. Naturales	39280,1	
		A. Heterogéneas + Cultivos + pastos	184,8	
	Directos al Río	Pastos + A. Naturales	57447,3	
352 7	Meta entre ríos Humea y Upia	A. Heterogéneas + Cultivos + pastos + Naturales	15437,6	
'	(mi)	A. Heterogéneas + Pastos + Plantaciones	41,8	
		Cultivos + Pastos	3728,9	
		Cultivos + Pastos + A. Naturales	45741,4	
		Cultivos + Pastos + A. Naturales	10604,8	
		Pastos + Plantaciones	620,0	
		Otros	5679,7	
	Total Directos al	Río Meta entre ríos Humea y Upia (mi)	223809,3	
	Directos al Río	A. Heterogéneas + A. Naturales	36825,5	
352	Meta entre ríos	Pastos + A. Naturales	321486,5	
4	Pauto y Carare (mi)	Otros	619259,7	2
	Total Directos al	Río Meta entre ríos Pauto y Carare (mi)	977571,7	
	Directos Bajo Meta entre ríos Casanare y Orinoco (md)	Plantaciones + A. Naturales	1120,5	
		Pastos + A. Naturales + Plantaciones	1520,4	
352		A. Heterogéneas + A. Naturales	79017,9	1
5		Pastos + A. Naturales	86267,4	'
	, ,	Otros	767916,6	
		jo Meta entre ríos Casanare y Orinoco (md)	935842,9	
380 5	Directos Orinoco entre ríos Tomo y Meta (mi)	A. Heterogéneas + A. Naturales	38851,1	1
3		Otros	541049,8	
	Total Directos Or	inoco entre ríos Tomo y Meta (mi)	579900,9	
		A. Heterogéneas + Pastos	30,7	
	Directos Río	A. Heterogéneas + Pastos + Naturales	1098,2	
370	Arauca (md)	A. Heterogéneas + A. Naturales	10966,8	4
6	Arauca (mu)	Pastos + A. Naturales	43760,2	4
		Otros	246444,0	
	Total Directos Río	Arauca (md)	302300,0	
	Directos Rio	Cultivos + A. Naturales	12117,7	
351	Metica entre	Plantaciones + A. Naturales	4775,4	
1	ríos Guayuriba y	Pastos + A. Naturales + Plantaciones	2268,0	2
'	Yucao	A. Heterogéneas + Cultivos	338,5	
	. 3040	A. Heterogéneas + Cultivos + Naturales	8667,5	

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + Pastos	307,1	
		A. Heterogéneas + Pastos + Naturales	16003,0	-
		A. Heterogéneas + A. Naturales	71084,3	-
		A. Heterogéneas + Cultivos + pastos	75,4	
		A. Heterogéneas + Cultivos + Plantaciones	0,7	
		Pastos + A. Naturales	92996,1	-
		A. Heterogéneas + Cultivos + pastos + Naturales	8952,5	
		A. Heterogéneas + Pastos + A. Degradadas	5,1	-
		A. Heterogéneas + Pastos + Plantaciones + Naturales	1044,8	
		A. Heterogéneas + Plantaciones + A. Naturales	1651,3	
		A. Heterogéneas + A. Naturales + cultivos + Pastos + Plantaciones	2036,5	
		Cultivos + Pastos	58,8	
		A. Heterogéneas + Cultivos + Plantaciones	2113,4	
		A. Naturales + Degradadas	293,7	-
		Cultivos + Pastos + A. Naturales	7565,6	
		Otros	218814,2	
	Total Directos Ri	o Metica entre ríos Guayuriba y Yucao	451169,5	
			2972564,	
	Directos	A. Heterogéneas + A. Naturales	0	
330	Vichada Medio	A. Naturales + Degradadas	2678,5	1
5		Otros	363002,2 3338244,	1
	Total Directos Vi	otal Directos Vichada Medio		
		Cultivos + A. Naturales	236,0	
		Plantaciones + A. Naturales	57,1	
		A. Heterogéneas + Cultivos	284,9	
		A. Heterogéneas + Cultivos + Naturales	138,4	
		A. Heterogéneas + Pastos	2982,2	
		A. Heterogéneas + Pastos + Naturales	2819,5	
351	Lago de Tota	A. Heterogéneas + A. Naturales	24219,5	1
6		A. Heterogéneas + Cultivos + pastos	8,0	'
		A. Heterogéneas + Cultivos + Plantaciones	23,0	
		Pastos + A. Naturales	1084,6	
		A. Heterogéneas + Cultivos + pastos + Naturales	37,6	
		A. Heterogéneas + Pastos + Plantaciones	9,9	
		A. Heterogéneas + Plantaciones	78,5	

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
-		A. Heterogéneas + Plantaciones + A. Naturales	2,0	
		Cultivos + Pastos	44,9	
		Cultivos + Pastos + A. Naturales	3,1	
		Cultivos + Pastos + A. Naturales	22,6	
		Pastos + Plantaciones	170,1	
		Otros	10892,9	
	Total Lago de To	ta	43114,6	
		A. Heterogéneas + Pastos	1347,9	
		A. Heterogéneas + Pastos + Naturales	96883,3	
321	Medio Guaviare	A. Heterogéneas + A. Naturales	1786763, 2	
0		Pastos + A. Naturales	81754,6	4
J		A. Naturales + Degradadas	1250,4	
		Otros	774528,1	
	Total Medio Guav	Total Medio Guaviare		
	Total Medio Guay		5	
		Cultivos + A. Naturales	30936,3	
		A. Heterogéneas + Cultivos	1993,6	
		A. Heterogéneas + Cultivos + Naturales	6099,2	
		A. Heterogéneas + Pastos	50386,0	
		A. Heterogéneas + Pastos + Naturales	205074,1	
		A. Heterogéneas + A. Naturales	1339637, 6	
		A. Heterogéneas + Cultivos + pastos	1836,3	
		Pastos + A. Naturales	343218,1	
320 6	Río Ariari	A. Heterogéneas + Cultivos + pastos + Naturales	26860,3	4
0		A. Heterogéneas + Pastos + Plantaciones	733,7	
		A. Heterogéneas + Degradadas	48,0	
		Cultivos + Pastos	658,6	
		A. Naturales + Degradadas	219,4	
		Cultivos + Pastos + A. Naturales	11539,0	
		Cultivos + Pastos + A. Naturales	37736,1	
		Pastos + Plantaciones	46,3	
		Otros	474795,0	
	Total Río Ariari		2531817, 7	
		Cultivos + A. Naturales	640,9	
360	Día Animaros	A. Heterogéneas + Pastos	1018,2	
1	Río Ariporo	A. Heterogéneas + Pastos + Naturales	115351,3	2
		A. Heterogéneas + A. Naturales	70992,8	

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		Pastos + A. Naturales	243351,2	
		A. Heterogéneas + Pastos + Plantaciones	126,5	
		Pastos + Plantaciones	386,2	
		Otros	560752,4	
	Total Río Ariporo)	992619,6	
	-	A. Heterogéneas + Pastos	353,7	
		A. Heterogéneas + Pastos + Naturales	3720,6	
	D (D • L (A. Heterogéneas + A. Naturales	1055573, 8	
370	Río Bojabá	Pastos + A. Naturales	14480,8	
4		A. Heterogéneas + Pastos + Plantaciones	40,1	-
-		A. Heterogéneas + Pastos + A. Degradadas	32044,4	2
		Otros	30646,3	
			1136859,	
	Total Río Bojabá		8	
460	Río Caguan Alto	A. Heterogéneas + A. Naturales	1,9	-
1	Total Río Caguar		1,9	-
-	Total Mo Cagaar	A. Heterogéneas + Pastos	1340,3	
		A. Heterogéneas + Pastos + Naturales	66934,7	
	_	A. Heterogéneas + A. Naturales	166922,2	_
360	Río Casanare	Pastos + A. Naturales	74625,1	1
2		Pastos + Plantaciones	315,9	- '
		Otros	417744,8	
	Total Río Casanare		727883,1	
	Cultivos + A. Naturales		4,4	
		A. Heterogéneas + Cultivos	40,5	
		A. Heterogéneas + Cultivos + Naturales	11,3	
		A. Heterogéneas + Pastos	10234,0	1
		A. Heterogéneas + Pastos + Naturales	28381,6	
		71. Heterogeneus - Fustos - Huturutes	1290070,	-
		A. Heterogéneas + A. Naturales	2	1
	-, -,	Pastos + A. Naturales	52750,6	
370	Río Chítaga	A. Heterogéneas + Cultivos + pastos +		
1		Naturales	241,0	1
-		A. Heterogéneas + Pastos + Plantaciones	362,7	
ļ		A. Heterogéneas + Plantaciones	8,5	
		A. Heterogéneas + Plantaciones + A.		
		Naturales	14,5	
		Pastos + Plantaciones	50,8	
-		Otros	60608,9	
			1442779,	
	Total Río Chitaga	A	· · · - · · · ,	

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
380	Río Cinaruco y	A. Heterogéneas + A. Naturales	16270,9	
		Pastos + A. Naturales	71119,6	4
9	Orinoco	Otros	484203,8	4
	Total Río Cinaruc	o y Directos Río Orinoco	571594,4	
		A. Heterogéneas + Pastos	215,8	
		A. Heterogéneas + Pastos + Naturales	7661,9	
	Río Cobugón -		1738845,	
370	Río Cobaría	A. Heterogéneas + A. Naturales	0	5
3		Pastos + A. Naturales	27166,2	J
		Otros	17375,5	
	Total Río Cobugón - Río Cobaría		1791264, 5	
		A. Heterogéneas + Pastos	9440,9	
		A. Heterogéneas + Pastos + Naturales	27725,3	
		A. Heterogéneas + A. Naturales	238034,2	
360	Río Cravo Norte	Pastos + A. Naturales	81828,8	2
3		A. Heterogéneas + Pastos + Plantaciones	438,8	²
		Pastos + Plantaciones	947,9	
		Otros	484497,1	
	Total Río Cravo Norte		842913,0	
		Cultivos + A. Naturales	10214,8	
		A. Heterogéneas + Cultivos	120,0	
		A. Heterogéneas + Cultivos + Naturales	3323,5	2
		A. Heterogéneas + Pastos	17776,9	
		A. Heterogéneas + Pastos + Naturales	199230,1	
		A. Heterogéneas + A. Naturales	281186,8	
		A. Heterogéneas + Cultivos + pastos	1249,6	5 1
352	Río Cravo Sur	Pastos + A. Naturales	190025,8	
1	No cravo sur	A. Heterogéneas + Cultivos + pastos + Naturales	16172,7	1
		A. Heterogéneas + Pastos + Plantaciones	480,3	
		Cultivos + Pastos	3375,5	
		Cultivos + Pastos + A. Naturales	19610,4	
		Cultivos + Pastos + A. Naturales	1267,9	
		Pastos + Plantaciones	962,0	
		Otros	198750,9	
	Total Río Cravo Sur		943747,3	
		Cultivos + A. Naturales	45674,2	
351		Pastos + A. Naturales + A. Degradadas	553,8	
9	Río Cusiana	A. Heterogéneas + Cultivos	646,9	1
		A. Heterogéneas + Cultivos + Naturales	10213,4	
		A. Heterogéneas + Pastos	18719,8	

Cod .	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + Pastos + Naturales	126177,1	
		A. Heterogéneas + A. Naturales	212050,3	
		A. Heterogéneas + Cultivos + pastos	732,8	
		Pastos + A. Naturales	170809,2	
		A. Heterogéneas + Cultivos + pastos + Naturales	24115,9	
		A. Heterogéneas + Pastos + Plantaciones	540,9	
		A. Heterogéneas + Pastos + A. Degradadas	622,0	
		Cultivos + Pastos	360,2	
		Cultivos + Pastos + A. Naturales	9441,7	
		Cultivos + Pastos + A. Naturales	7089,4	
		Pastos + Plantaciones	491,7	
		Otros	240669,9	
	Total Río Cusiana		868909,2	
		Plantaciones + A. Naturales	2122,5	
		Pastos + A. Naturales + Plantaciones	9350,3	
	Río Elvita	A. Heterogéneas + Pastos + Naturales	1109,1	
340	RIO ELVILA	A. Heterogéneas + A. Naturales	115667,4	4
2		Pastos + A. Naturales	658255,0	1
		Otros	568841,0	
	Total Río Elvita		1355345, 4	
		Cultivos + A. Naturales	111,3	
		Plantaciones + A. Naturales	3291,6	
		A. Heterogéneas + Cultivos	983,9	
		A. Heterogéneas + Cultivos + Naturales	1398,0	
		A. Heterogéneas + Pastos	101315,9	
		A. Heterogéneas + Pastos + Naturales	27316,7	
		A. Heterogéneas + A. Naturales	105474,4	
		A. Heterogéneas + Cultivos + pastos	145,2	1
		Pastos + A. Naturales	47889,6	
350 7	Río Garagoa	A. Heterogéneas + Cultivos + pastos + Naturales	52,9	1
		A. Heterogéneas + Pastos + Plantaciones	aciones 394,3	-
		A. Heterogéneas + Pastos + Plantaciones +	,	-
	1	Naturales	22,7	
		A. Heterogéneas + Plantaciones	212,5	
		A. Heterogéneas + Plantaciones + A.	83,2	
		Naturales	•	
		Cultivos + Pastos	339,0	
		Cultivos + Pastos + A. Naturales	15,3	
		Pastos + Plantaciones	18,8	

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		Otros	741074,5	
	Total Dia Caraga	_	1030140,	
	Total Río Garago	d	0	
		Cultivos + A. Naturales	481,6	
		A. Heterogéneas + Cultivos	268,7	-
		A. Heterogéneas + Cultivos + Naturales	9862,2	
		A. Heterogéneas + Pastos	8616,1	-
		A. Heterogéneas + Pastos + Naturales	29486,1	-
		A. Heterogéneas + A. Naturales	28426,4	4
		A. Heterogéneas + Cultivos + pastos	846,6	-
		Pastos + A. Naturales	18988,1	-
350 4	Río Guacavía	A. Heterogéneas + Cultivos + pastos + Naturales	14399,1	1
		A. Heterogéneas + Pastos + Plantaciones	413,5	-
		A. Heterogéneas + Degradadas	65,5	-
		Cultivos + Pastos	2390,7	
		A. Naturales + Degradadas	90,6	-
		Cultivos + Pastos + A. Naturales	10774,8	-
		Pastos + Plantaciones	65,7	
		Otros	16710,5	
	Total Río Guacavía		141886,1	
		A. Heterogéneas + Pastos	1141,0	
		A. Heterogéneas + Pastos + Naturales	52166,0	
320	Río Guape	A. Heterogéneas + A. Naturales	935571,5	4
2		Pastos + A. Naturales	16320,7	
_		Otros	4475,3	_
	Total Río Guape		1009674,	
	Total No Guape		5	
		Cultivos + A. Naturales	50444,6	
		A. Heterogéneas + Cultivos + Naturales	12386,1	
		A. Heterogéneas + Pastos + Naturales	1076,8	4
		A. Heterogéneas + A. Naturales	261863,0	
		Pastos + A. Naturales	19673,1	
330	Río Guarrojo	A. Heterogéneas + Cultivos + pastos +	19597,8	4
2		Naturales	·	4
		A. Heterogéneas + Pastos + A. Degradadas	858,7	-
		A. Heterogéneas + A. Naturales + cultivos +	7686,9	
		A. Degradadas A. Naturales + Degradadas	10071 7	-
			19071,7 391981,3	-
	Total Río Guarrojo		784640,2	-
	Río Guatiquía	Cultivos + A. Naturales	2208,0	2
	Nio Guatiquia	Cultivos + A. Naturales	2200,0	2

Cod .	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + Cultivos	658,1	
		A. Heterogéneas + Cultivos + Naturales	2478,8	
		A. Heterogéneas + Pastos	9632,0	
		A. Heterogéneas + Pastos + Naturales	19639,7	
		A. Heterogéneas + A. Naturales	216559,3	-
		A. Heterogéneas + Cultivos + pastos	820,8	
		Pastos + A. Naturales	56137,3	
350 3		A. Heterogéneas + Cultivos + pastos + Naturales	29409,1	
		A. Heterogéneas + Pastos + Plantaciones	165,2	
		A. Heterogéneas + Pastos + A. Degradadas	17,8	
		Cultivos + Pastos	2731,5	
		A. Naturales + Degradadas	285,8	
		Cultivos + Pastos + A. Naturales	13837,9	
		Otros	141577,6	
	Total Río Guatiqu	uía	496158,8	
		Pastos + A. Naturales + A. Degradadas	112,9	
		A. Heterogéneas + Pastos	35762,0	
		A. Heterogéneas + Pastos + Naturales	90698,3	
		A. Heterogéneas + A. Naturales	130628,2	
		Pastos + A. Naturales	108427,5	
350	Río Guavio	A. Heterogéneas + Pastos + Plantaciones	372,5	
6	KIO GUAVIO	A. Heterogéneas + Pastos + A. Degradadas	915,9	1
0		A. Heterogéneas + Degradadas	68,1	
		A. Naturales + Degradadas	29,3	
		Pastos + Plantaciones	1253,5	
		Pastos + A. Degradadas	1,1	
		Otros	178373,2	
	Total Río Guavio		546642,5	
		A. Heterogéneas + Pastos	56,7	
	_	A. Heterogéneas + Pastos + Naturales	1937,5	
	Río Guayabero	A. Heterogéneas + A. Naturales	792200,5	5
1		Pastos + A. Naturales	15255,5	
		Otros	1860,3	
	Total Río Guayabero		811310,4	
		Cultivos + A. Naturales	2814,3	
		Pastos + A. Naturales + A. Degradadas	429,0	
350		A. Heterogéneas + Cultivos	1359,3	
2	Río Guayuriba	A. Heterogéneas + Cultivos + Naturales	10509,0	2
_		A. Heterogéneas + Pastos	60168,1	
		A. Heterogéneas + Pastos + Naturales	44498,0	
		A. Heterogéneas + A. Naturales	649237,1	

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + Cultivos + pastos	243,0	
		Pastos + A. Naturales	50927,8	
		A. Heterogéneas + Cultivos + pastos + Naturales	6352,8	
		A. Heterogéneas + Pastos + Plantaciones	565,7	
		A. Heterogéneas + Pastos + A. Degradadas	5968,4	
		A. Heterogéneas + Pastos + A. Degradadas	196,5	
		A. Heterogéneas + Plantaciones	146,5	
		A. Heterogéneas + Degradadas	28,1	
		A. Heterogéneas + Plantaciones + A. Naturales	216,4	
		Cultivos + Pastos	11052,5	
		A. Naturales + Degradadas	1970,6	
		Cultivos + Pastos + A. Naturales	16370,7	
		Pastos + Plantaciones	77,4	
		Pastos + A. Degradadas	79,0	
		Otros	616174,8	
	Total Río Guayuri	ha	1479385,	
	Total No Guayuri		0	
		A. Heterogéneas + Cultivos	239,4	
		A. Heterogéneas + Cultivos + Naturales	181,5	
		A. Heterogéneas + Pastos	29509,8	
		A. Heterogéneas + Pastos + Naturales	278012,0	
		A. Heterogéneas + A. Naturales	1478471,	
	Río Guejar	Pastos + A. Naturales	86750,2	
320 7		A. Heterogéneas + Cultivos + pastos + Naturales	5843,9	2
		A. Heterogéneas + Pastos + Plantaciones	587,6	
		A. Naturales + Degradadas	56,2	
		Cultivos + Pastos + A. Naturales	295,8	
		Pastos + Plantaciones	138,8	
		Otros	39911,4	
	Total Río Guejar		1919998, 3	
		Cultivos + A. Naturales	2320,8	
	Río Humea	Pastos + A. Naturales + A. Degradadas	71,6	
250		A. Heterogéneas + Cultivos	338,2	
350 5		A. Heterogéneas + Cultivos + Naturales	9994,5	2
3		A. Heterogéneas + Pastos	22857,9	
		A. Heterogéneas + Pastos + Naturales	55760,7	
		A. Heterogéneas + A. Naturales	58484,5	

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + Cultivos + pastos	1540,9	
		Pastos + A. Naturales	64829,6	
		A. Heterogéneas + Cultivos + pastos + Naturales	9077,2	
		A. Heterogéneas + Pastos + Plantaciones	637,8	
		Cultivos + Pastos	13150,3	-
		A. Naturales + Degradadas	25,6	
		Cultivos + Pastos + A. Naturales	15523,2	-
		Cultivos + Pastos + A. Naturales	1630,5	
		Pastos + Plantaciones	594,9	-
		Otros	69790,0	
	Total Río Humea		326628,2	
		A. Heterogéneas + Pastos + Naturales	161949,5	
			1741829,	
224	Río Iteviare	A. Heterogéneas + A. Naturales	9	
321		Pastos + A. Naturales	13738,4	6
3		Otros	713405,2	
	Tatal Dia Itariana			
	Total Río Iteviare		2630923, 0	
		Cultivos + A. Naturales	1014,0	
		A. Heterogéneas + Cultivos	6315,6	
		A. Heterogéneas + Cultivos + Naturales	3676,6	
		A. Heterogéneas + Pastos	17657,0	
		A. Heterogéneas + Pastos + Naturales	41388,0	
		A. Heterogéneas + A. Naturales	116104,4	
		A. Heterogéneas + Cultivos + pastos	1532,8	
350	Río Lengupá	Pastos + A. Naturales	54989,6	
8	Kio Lengupa	A. Heterogéneas + Cultivos + pastos + Naturales	699,2	2
		A. Heterogéneas + Pastos + Plantaciones	201,8	
		Cultivos + Pastos	2408,6	
		A. Naturales + Degradadas	14,4	
		Cultivos + Pastos + A. Naturales	461,4	
		Pastos + Plantaciones	300,4	
		Otros	67513,2	
	Total Río Lengupa		314277,3	
		Cultivos + A. Naturales	6583,9	
		Pastos + A. Naturales + Plantaciones	7308,9	
351	Río Manacacias	A. Heterogéneas + Cultivos	22,3	4
5		A. Heterogéneas + Cultivos + Naturales	21563,6	4
		A. Heterogéneas + Pastos	42,1	
		A. Heterogéneas + Pastos + Naturales	26550,8	

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + A. Naturales	247830,5	
		Pastos + A. Naturales	311720,0	
		A. Heterogéneas + Cultivos + pastos + Naturales	8846,7	
		A. Heterogéneas + A. Naturales + cultivos + A. Degradadas	7686,9	
		A. Naturales + Degradadas	12535,8	
		Cultivos + Pastos + A. Naturales	2256,5	
		Cultivos + Pastos + A. Naturales	12807,2	
		Otros	2215428, 8	
	Total Río Manaca		2881184, 0	
		A. Heterogéneas + A. Naturales	3616,0	
370	Río Margua	Pastos + A. Naturales	572,9	
2	mo margaa	Otros	471,4	4
_	Total Río Margua	1	4660,2	
	Total Margaa	A. Heterogéneas + Pastos + Naturales	2190,9	
	Río Melúa	A. Heterogéneas + A. Naturales	81439,5	_
351		Pastos + A. Naturales	130384,5	5
3		Otros	347322,4	
	Total Río Melúa	0.00	561337,3	
	Total Rio Metaa	Cultivos + A. Naturales	15151,5	
		Plantaciones + A. Naturales	19662,9	
	Río Muco	A. Heterogéneas + Cultivos + Naturales	32238,6	
		A. Heterogéneas + Pastos + Naturales	2387,6	
		A. Heterogéneas + A. Naturales	245947,0	
		Pastos + A. Naturales	9008,9	
330		A. Heterogéneas + Cultivos + pastos + Naturales	28684,5	4
3		A. Heterogéneas + Pastos + A. Degradadas	858,7	
		A. Heterogéneas + A. Naturales + cultivos + A. Degradadas	7686,9	
		Cultivos + Pastos + A. Naturales	4725,1	
		Cultivos + Pastos + A. Naturales	3399,0	
		Otros	475201,5	
	Total Río Muco	1	844952,4	
		Cultivos + A. Naturales	3358,7	
254		A. Heterogéneas + Cultivos	1256,8	
351	Río Negro	A. Heterogéneas + Cultivos + Naturales	6014,6	2
0	THE TRESTO	A. Heterogéneas + Pastos	5708,6	
		A. Heterogéneas + Pastos + Naturales	16158,3	1

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + A. Naturales	8618,0	
		A. Heterogéneas + Cultivos + pastos	194,0	-
		Pastos + A. Naturales	26221,5	-
		A. Heterogéneas + Cultivos + pastos + Naturales	4571,9	
		A. Heterogéneas + Pastos + Plantaciones	313,9	-
		Cultivos + Pastos	3405,6	-
		Cultivos + Pastos + A. Naturales	24478,3	
		Cultivos + Pastos + A. Naturales	1494,1	-
		Otros	18953,4	-
	Total Río Negro		120747,6	-
310	Río Papunaya		2285,7	
5	Total Río Papuna	ya	2285,7	
		Cultivos + A. Naturales	241,3	
		A. Heterogéneas + Cultivos	155,9	-
		A. Heterogéneas + Cultivos + Naturales	3706,8	
		A. Heterogéneas + Pastos	4793,4	
	Río Pauto	A. Heterogéneas + Pastos + Naturales	91881,8	
		A. Heterogéneas + A. Naturales	162453,9	
		A. Heterogéneas + Cultivos + pastos	297,2	-
		Pastos + A. Naturales	149437,5	-
352 3		A. Heterogéneas + Cultivos + pastos + Naturales	833,8	2
		A. Heterogéneas + Pastos + Plantaciones	232,5	-
		Cultivos + Pastos	398,9	-
		A. Naturales + Degradadas	145,3	-
		Cultivos + Pastos + A. Naturales	1632,5	-
		Cultivos + Pastos + A. Naturales	1737,7	-
		Pastos + Plantaciones	747,9	-
		Otros	413018,7	-
	Total Río Pauto		831715,1	-
		A. Heterogéneas + Pastos + Naturales	112945,3	
	Río Siare	A. Heterogéneas + A. Naturales	684831,9	-
321		Pastos + A. Naturales	16568,8	4
2		Otros	447362,0	- 4
	Takal Día Ciana		1261708,	
	Total Río Siare		0	
		Cultivos + A. Naturales	21999,5	
254	Día Túa ·· atras	Pastos + A. Naturales + Plantaciones	924,5	
351 °	Río Túa y otros	A. Heterogéneas + Pastos	11482,2	6
8	directos al Meta	A. Heterogéneas + Pastos + Naturales	52483,2	
		A. Heterogéneas + A. Naturales	39630,8	

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + Cultivos + pastos	90,9	
		Pastos + A. Naturales	108299,5	
		A. Heterogéneas + Cultivos + pastos + Naturales	1227,8	
		A. Heterogéneas + Pastos + Plantaciones	517,1	
		Cultivos + Pastos	40,6	-
		Cultivos + Pastos + A. Naturales	10694,8	
		Cultivos + Pastos + A. Naturales	11993,5	
		Pastos + Plantaciones	479,0	
		Otros	137867,2	
	Total Río Túa y o	tros directos al Meta	397730,6	
		A. Heterogéneas + Pastos + Naturales	233,2	
			1071791,	
200	Río Tuparro	A. Heterogéneas + A. Naturales	2	
380	'	Pastos + A. Naturales	46194,9	1
2		Otros	956410,4	
	Tatal Dia Tunanna		2074629,	
	Total Río Tuparro		7	
		Cultivos + A. Naturales	1010,9	
		Pastos + A. Naturales + A. Degradadas	9,2	
		Pastos + A. Naturales + Plantaciones	522,5	
		A. Heterogéneas + Cultivos	339,2	
		A. Heterogéneas + Cultivos + Naturales	311,7	
		A. Heterogéneas + Pastos	6603,6	
		A. Heterogéneas + Pastos + Naturales	42276,6	
		A. Heterogéneas + A. Naturales	100489,8	
		A. Heterogéneas + Cultivos + pastos	99,6	
350	Día Unía	Pastos + A. Naturales	52419,6	
9	Río Upía	A. Heterogéneas + Cultivos + pastos + Naturales	6328,9	2
		A. Heterogéneas + Pastos + Plantaciones	203,6	
		A. Heterogéneas + Pastos + A. Degradadas	67,3	
		A. Heterogéneas + Degradadas	6,3	
		Cultivos + Pastos	375,6	
		Cultivos + Pastos + A. Naturales	14334,8	
		Cultivos + Pastos + A. Naturales	1480,6	
		Pastos + Plantaciones	591,5	
		Otros	85327,0	
	Total Río Upía	·	312798,2	
200	·	Cultivos + A. Naturales	2554,2	
380	Río Bita	A. Heterogéneas + A. Naturales	94787,5	1
1		Pastos + A. Naturales	124869,0	

Cod	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Naturales + Degradadas	13879,5	
		3	1288630,	
		Otros	3	
	Tatal Dia Vita		1524720,	
	Total Río Vita		5	
		Cultivos + A. Naturales	1114,8	
		Plantaciones + A. Naturales	7622,7	
		Pastos + A. Naturales + Plantaciones	10845,3	
		A. Heterogéneas + Cultivos	213,3	
		A. Heterogéneas + Cultivos + Naturales	3302,5	
		A. Heterogéneas + Pastos + Naturales	6063,9	
		A. Heterogéneas + A. Naturales	88483,0	
		A. Heterogéneas + Cultivos + pastos	75,4	
		Pastos + A. Naturales	154078,5	
		A. Heterogéneas + Cultivos + pastos +	7020 2	
		Naturales	7838,3	
351	Río Yucao	A. Heterogéneas + Pastos + Plantaciones +	5 7 0 /	4
2		Naturales	578,4	4
		A. Heterogéneas + Plantaciones	4,2	
		A. Heterogéneas + Plantaciones + A.	3315,9	
		Naturales	3313,7	
		A. Heterogéneas + A. Naturales + cultivos +	1014,1	
		Pastos + Plantaciones	ŕ	
		Cultivos + Pastos	93,1	
		A. Naturales + Degradadas	713,4	
		Cultivos + Pastos + A. Naturales	3699,4	
		Cultivos + Pastos + A. Naturales	1480,8	
	-	Otros	53533,6	
	Total Río Yucao		344070,4	
		A. Heterogéneas + Pastos	11766,0	
		A. Heterogéneas + Pastos + Naturales	28849,0	
	Rio Banadía y otros Directos al Río Arauca	A. Heterogéneas + A. Naturales	75768,0	
370		Pastos + A. Naturales	49403,3	
5		A. Heterogéneas + Pastos + Plantaciones	542,5	2
		A. Heterogéneas + Pastos + A. Degradadas	16022,2	
		Pastos + Plantaciones	619,9	
		Otros	36477,3	
	Total Rio Banadia y otros Directos al Río Arauca		219448,2	
		A. Heterogéneas + Pastos	11114,9	
320	Rio Losada	A. Heterogéneas + Pastos + Naturales	58259,6	1
3	RIO LOSAGA	A. Heterogéneas + A. Naturales	534570,6	
		Pastos + A. Naturales	72624,3	

Cod .	NOMSZH	Clasificación	Total	Sostenibilidad
		A. Heterogéneas + Pastos + Plantaciones	649,9	
		Pastos + Plantaciones	957,3	
		Otros	6028,4	
	Total Rio Losada		684205,1	
		Cultivos + A. Naturales	16099,7	
		A. Heterogéneas + Cultivos	1395,0	
		A. Heterogéneas + Cultivos + Naturales	74571,9	
		A. Heterogéneas + Pastos	20161,2	
		A. Heterogéneas + Pastos + Naturales	88209,1	
		A. Heterogéneas + A. Naturales	858830,3	
	Rio Metica	A. Heterogéneas + Cultivos + pastos	2322,6	
350	(Guamal -	Pastos + A. Naturales	114019,3	
1	Humadea)	A. Heterogéneas + Cultivos + pastos + Naturales	60238,7	1
		A. Heterogéneas + Pastos + Plantaciones	956,8	
		Cultivos + Pastos	16968,8	
		Cultivos + Pastos + A. Naturales	137534,4	
		Cultivos + Pastos + A. Naturales	1479,2	
		Otros	286409,6	
	Total Rio Metica (Guamal - Humadea)		1679196,	
	TOTAL NIO METICA	Qualitat - Hulliauca)	5	

El hecho de que se observe una condición no adecuada en las dos aproximaciones, así como el descenso de la condición en Subzonas Hidrográficas (Cuencas) muy importantes en el Isorendimiento de la macrocuenca del Orinoco, tales como Muco, Chítága, Margua, Yucao y Directos Río Metica entre Guayuriba y Yucao, sugiere estas zonas como de mayor importancia para la gestión de la Sostenibilidad, la Biodiversidad y los Servicios Ecosistémicos relacionados con el agua.

Se observa que los usos y arreglos en las unidades de análisis *per se* no están definiendo estados de sostenibilidad, sino que estos están definidos por el valor que estos dan a un indicador y como este indicador e relaciona con los otros indicadores analizados.

2.4.1 Representación gráfica del análisis

2.4.1.1. Modelo conceptual de la estructura de representación

El siguiente informe contiene el modelo conceptual y la estructura de representación, incluyendo las herramientas gráficas para presentar la batería de indicadores considerados y medidos a partir de la información disponible, que permiten definir las condiciones de sostenibilidad/resiliencia actual para usos agropecuarios en la Orinoquia colombiana.

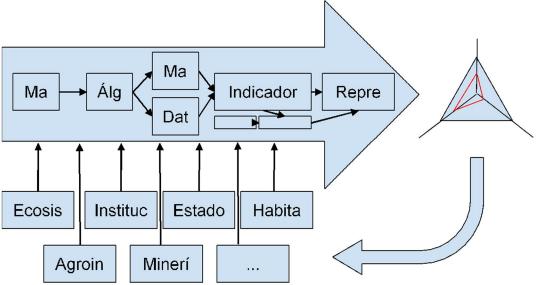


Figura 22 Modelo conceptual y estructura de representación.

El modelo se concibe sobre la idea de cómo abordar los territorios para construir un objetivo común a través de la inteligencia colectiva, representado en los principios de sostenibilidad planteados. Dichos principios son representados mediante diferentes atributos que componen un conjunto de indicadores, los cuales ingresan como mapas al modelo de análisis.

Tabla 15 Indicadores de los principios.

Indicador	Principio al que pertenece	
Heterogeneidad	Multifuncionalidad	
Oferta de servicios ecosistémicos	Productividad	
Riesgo de pérdida de servicios ecosistémicos (proxy Redundancia)	Productividad	
Integridad ecológica	Bienestar	
Probabilidad de colapso	Bienestar	

Los indicadores se expresan dependiendo de una o más condiciones, que son llamadas criterios. Cada mapa contiene una o más de estas variables, con las que luego se genera el nuevo mapa de **sostenibilidad** para las subzonas hidrográficas (cuencas), usando álgebra de mapas, para lo cual se se utiliza la información de estudios regionales realizados por el Instituto Humboldt para cada uno de los indicadores, los cuales están escalados ordinalmente, constituyendo los *vi*; con ellos se hace una sumatoria ponderada por el respectivo factor *ki* lo que a su vez está dividido por la sumatoria de los máximos valores posibles asociados a cada criterio. Con ello se obtienen nuevos valores que se

representan tanto en el mapa de sostenibilidad, como en el gráfico de radar, como se indica en las figuras 2 y 3.

Como indicadores favorables a la sostenibilidad se consideran los valores altos de Heterogeneidad, Integridad Ecológica y de Oferta de Servicios Ecosistémicos y como índices que afectan negativamente la sostenibilidad se consideran la Probabilidad de colapso y el Riesgo de Pérdida de Servicios Ecosistémicos. Para estos últimos además se tiene en cuenta el complemento al valor máximo, para establecer una escala común de relacionamiento entre los tres primeros criterios y los dos últimos.

Se realiza la ponderación mediante una productoria de los criterios y posteriormente se escala en seis niveles desde muy baja hasta muy alta sostenibilidad.

El gráfico radar, que también está presente en la representación, compara la sostenibilidad para cada cuenca, con la sostenibilidad promedio en cada uno de los cinco criterios considerados.

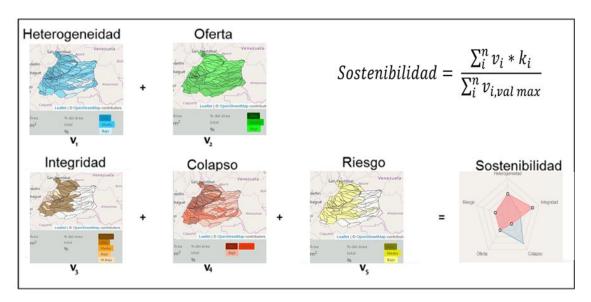


Figura 23 Procedimiento para el cálculo de sostenibilidad.

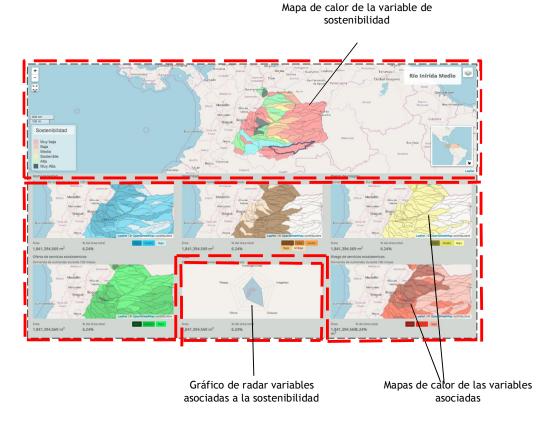


Figura 24 Mapas de calor y gráfico de radar

Si bien la metodología planteada permite establecer lineamientos y estrategias de gestión de las transiciones hacia la sostenibilidad, particularmente entendiendo que este es un atributo emergente de todas la relaciones existentes en el paisaje y que estas se miden a través de los indicadores y, por tanto, la variación de los datos, los criterios o las relaciones entre ellos, denota variaciones más o menos modificantes de la condición de sostenibilidad, dependiendo de las dominancias, como se menciona en el capítulo siguiente, la economía de las transiciones:

- a) No debe verse solamente a través de sectores o subsectores de la producción, o prácticas para hacer las cosas "sostenibles", sino que debe ser el conjunto de políticas, acciones y estrategias para la búsqueda de alternativas al modelo predominante (ver siguiente capítulo), basadas en análisis regionales.
- b) Las alternativas deben ser definidas, o al menos acordadas con los actores al interior de los paisajes a través de la construcción de nuevos referentes que expliquen la expresión

emergente deseada, dado que el concepto de sostenibilidad puede alcanzar ideales diferentes tanto actores y relaciones hay en el paisaje.

2.4.1.2 Mapas de calor

Los mapas de calor son una técnica de análisis visual idónea para representar patrones y composiciones de información por medio de la relación que existe entre las partes con el todo y las distribuciones geográficas de dicha información. Estas distribuciones geográficas están divididas en regiones (polígonos) que están coloreados o modeladas en relación con una variable de datos.

Esto proporciona una forma de visualizar los valores en un área geográfica, que puede mostrar variaciones o patrones en una ubicación. Son ideales para facilitar la identificación de áreas de interés y el hallazgo de valores extremos (superiores/inferiores) dentro de un conjunto de datos por medio de una clasificación.

Por ejemplo, con el fin de identificar la mejor y la peor región con respecto a la variable de homogeneidad, se grafican los datos de los resultados del análisis utilizando un mapa de calor. Se utiliza el color azul oscuro para resaltar las zonas con los mejores resultados, y se utiliza el color azul claro para resaltar las zonas con los resultados más bajos.

El mapa de calor es una representación gráfica de los valores de los datos codificada mediante colores. Se asigna un color diferente a cada valor de acuerdo con el rango en el que se encuentre. Por ejemplo, en el mapa de calor de sostenibilidad asignamos los valores de 0 a 3 al color rojo, de 4 a 6 al color rosa... y 7 a 10 al color verde.

Cada mapa de calor está asociado a una tabla que puede estar ubicada dentro o fuera del mapa. Dicha tabla representa un arreglo de valores, en el cual cada posición se codificada con un color de acuerdo con el valor de la variable asociada, como se muestra en la siguiente figura:

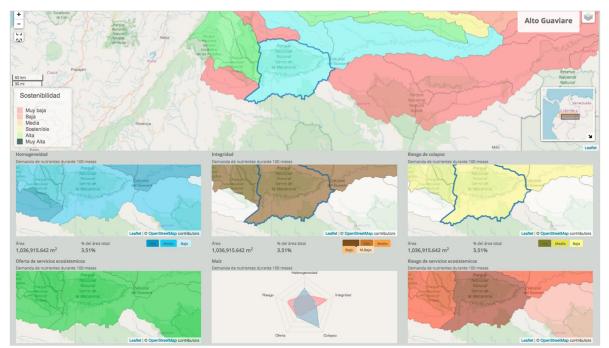


Figura 25 Gráfico de telaraña conformado con los diferentes indicadores de sostenibilidad.

Cada mapa representa una medida geográfica en la que todos los polígonos están codificados con un color de acuerdo a la variable asociada. Y en lugar de colorear el mapa completo, este está compuesto por un grupo de polígonos que representan todas las cuencas.

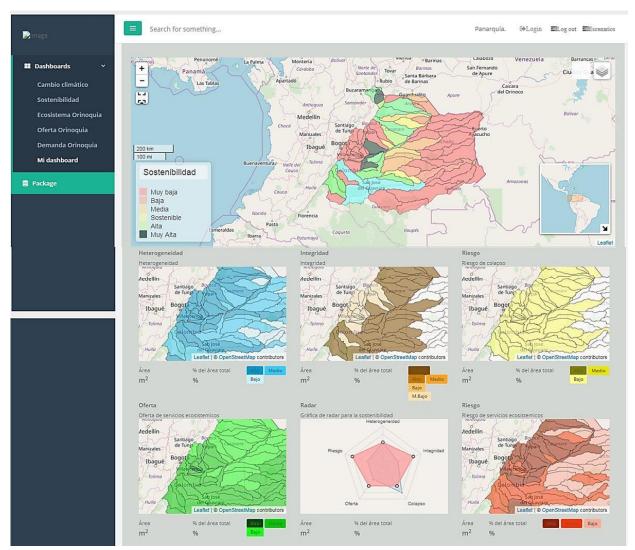


Figura 26 Mapa de sostenibilidad para las cuencas.

2.4.1.3 Gráfico de radar de Sostenibilidad

Los gráficos de radar son una forma de comparar múltiples variables cuantitativas. Esto los hace útiles para ver qué variables tienen valores similares o si hay valores atípicos entre cada variable. Los gráficos de radar también son útiles para ver las variables que tienen una puntuación alta o baja dentro de un conjunto de datos, lo que las hace ideales para mostrar el rendimiento.

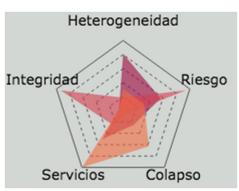


Figura 27 Gráfico de telaraña para representar sostenibilidad

Cada variable cuenta con un eje que comienza desde el centro. Todos los ejes están dispuestos radialmente, con las mismas distancias entre ellos, manteniendo la misma escala entre todos los ejes. Las líneas de cuadrícula que se conectan de eje a eje a menudo se utilizan como una guía. Cada valor variable se traza a lo largo de su eje individual y todas las variables en un conjunto de datos, se conectan entre sí para formar un polígono.

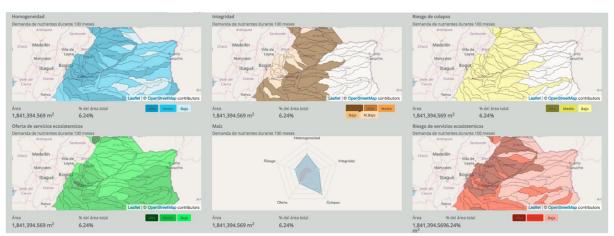


Figura 28 Mapas que representan las variables insumo para cálculo de la sostenibilidad

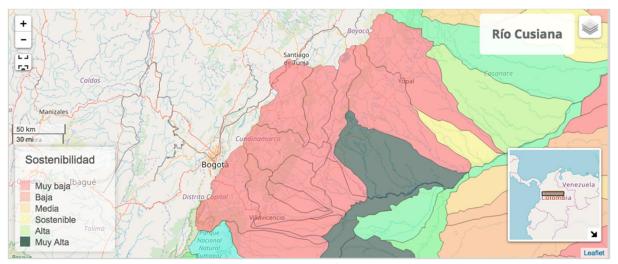


Figura 29 Mapas de distribución de las cuencas en la Orinoquía

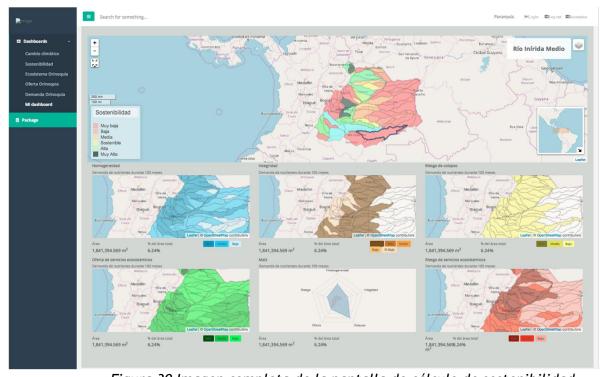


Figura 30 Imagen completa de la pantalla de cálculo de sostenibilidad.

A manera de demo de los resultados esperados del análisis de sostenibilidad se elaboró el *Dashboard Web*, en donde se permite la selección de uno de los paisajes (para el caso son subzonas hidrográficas en la Macrocuenca de la Orinoquía colombiana), para visualizar en sub representaciones espaciales los resultados de cada uno de los indicadores que se han definido hasta el momento y de los cuales se

tiene la data completa y la manera en la que estos indicadores (en rojo) se contrastan con el principio que se ha definido para el paisaje seleccionado (en azul) en una representación tipo radar.

El link en el que se encuentra alojado esta estructura de representación es el siguiente:

HTTP://ALTILLANURA-33888.APPSPOT.COM/APP/#!/SOST