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Abstract

Tropical dry forests (TDFs) have been defined as a single biome occurring mostly in the lowlands
where there is a marked period of drought during the year. In the Neotropics, dry forests occur across
contrasting biogeographical regions that contain high beta diversity and endemism, but also strong
anthropogenic pressures that threaten their biodiversity and ecological integrity. In Colombia, TDFs
occur across six regions with contrasting soils, climate, and anthropogenic pressures, therefore being
ideal for studying how these variables relate to dry forest species composition, successional stage and
conservation status. Here, we explore the variation in climate and soil conditions, floristic
composition, forest fragment size and shape, successional stage and anthropogenic pressures in 571
dry forest fragments across Colombia. We found that TDFs should not be classified solely on rainfall
seasonality, as high variation in precipitation and temperature were correlated with soil characteristics.
In fact, based on environmental factors and floristic composition, the dry forests of Colombia are
clustered in three distinctive groups, with high species turnover across and within regions, as reported
for other TDF regions of the Neotropics. Widely distributed TDF species were found to be generalists
favored by forest disturbance and the early successional stages of dry forests. On the other hand, TDF
fragments were not only small in size, but highly irregular in shape in all regions, and comprising
mostly early and intermediate successional stages, with very little mature forest left at the national
level. At all sites, we detected at least seven anthropogenic disturbances with agriculture, cattle
ranching and human infrastructure being the most pressing disturbances throughout the country.
Thus, although environmental factors and floristic composition of dry forests vary across regions at
the national level, dry forests are equally threatened by deforestation, degradation and anthropogenic
pressures all over the country, making TDFs a top priority for conservation in Colombia.

© 2018 The Author(s). Published by IOP Publishing Ltd
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1. Introduction

Tropical dry forests (TDFs) occur in America, Asia
and Africa, where mean annual temperature is greater
than 17 °C, annual rainfall ranges from 250-2000 mm
and potential evapotranspiration is higher than pre-
cipitation (Holdridge 1967, Murphy and Lugo 1986,
Kalacska et al 2004, Dirzo et al 2011). However, cli-
matic limits of dry ecosystems are still unclear, as the
dry biome occurs across different rainfall regimes (e.g.
dry savannas can have up to 2500 mm rainfall-year~!,
Lehmann et al 2011) and vary dramatically in soil
conditions (Rundel and Boonpragob 1995, Sampaio
1995) and elevation. Therefore, TDFs are generally
defined by their seasonality, with 3-6 dry months
(precipitation < 100 mm-month~!, Portillo-Quintero
and Sanchez-Azofeifa 2010), which determines the
deciduous phenology of many woody plants, and the
biological cycles of these forests as a whole (Pennington
et al 2009, Dirzo et al 2011). In terms of floris-
tic composition, TDFs strongly differ between South
America, Africa and Asia (Dexter et al 2015), and have
a high plant species turnover across the Neotropics,
where species of different floristic groups are com-
monly restricted to a single region (DRYFLOR et al
2016).

Although TDFs are used to represent 42% of all
the worlds’ tropical forests (Brown and Lugo 1982),
only 1000000km? are left worldwide (Miles et al
2006, Portillo-Quintero and Sanchez-Azofeifa 2010,
Powers et al 2011), with more than 50% left in South
America (Miles et al 2006). These forests have been
recognized as highly endangered ecosystems (Murphy
and Lugo 1986, Janzen 1988). However, research in the
tropics has been concentrated on more humid forests
(Powers et al 2011, Sanchez-Azofeifa and Portillo-
Quintero 2011). This imbalance in knowledge has
also been reflected in a general absence of stud-
ies that assess the different environmental conditions
under which dry forests occur, and their degree of
degradation and fragmentation across Latin America
(Sanchez-Azofeifa et al 2005, Portillo-Quintero and
Sanchez-Azofeifa 2010, Sanchez-Azofeifa and Portillo-
Quintero 2011). For instance, recent studies showed
high floristic turnover among different regions in the
Neotropics (DRYFLOR et al 2016), but little is known
on how differences in species composition may be
related to climate and soil factors.

Accurate measurements of TDF extent and suc-
cessional status are key tools for the conservation
and landscape planning for these forests (Hesketh
and Sanchez-Azofeifa 2014), and are necessary for
addressing their ecological importance and as providers
of ecosystem services (Calvo-Rodriguez et al 2016).
The only analysis of TDF cover at the global scale
revealed that deforestation was six times higher in
Latin America (12%) compared to Asia and Africa
(2%) between 1980 and 2000 (Miles et al 2006). Sim-
ilarly, Olson et al (2001) and Portillo-Quintero and
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Sanchez-Azofeifa (2010) showed that 66% of dry
forest in Latin America has been lost due to defor-
estation, and only 4.5% is subject to protection. At
the regional level, similar efforts to map the distri-
bution and loss of TDFs have been published for
Mexico (Trejo and Dirzo 2000, Sanchez-Azofeifa et al
2009), Puerto Rico (Martinuzzi et al 2013), Venezuela
(Fajardo et al 2005) and the Antilles (Helmer et al
2008). However, few studies have evaluated the suc-
cessional status and anthropogenic pressures of dry
forests in the field (e.g. Larkin e al 2012), which is
key information for addressing their real conservation
status. Furthermore, few studies have explored how
in addition to fragmentation and successional status
of dry forests, environmental conditions and species
composition vary across different regions, which is cru-
cial for implementing more effective conservation and
management plans for TDFs.

In Colombia, TDFs originally covered 8’882 854 ha,
but around 90% of its cover was replaced by pas-
tures, agricultural fields, and urbanization by the end
of the 20th century (Etter et al 2008, Garcia et al
2014). In fact, only 8% (720000 ha) of TDF original
cover is left in land mosaics in which successional for-
est covers at least 30% of the territory (384416 ha)
(Garcia et al 2014). This means that less than 4% of
the original TDFs remain as mature forests. More-
over, only 5% of what is left is preserved in protected
areas (Garcia et al 2014). Given this critical situation
and the lack of information on the conservation sta-
tus of this ecosystem in Colombia (Fernandez-Méndez
et al 2014, Pizano et al 2014), the purpose of this
study was to evaluate the variation of environmental
conditions, floristic composition and conservation sta-
tus of TDFs at the national level by doing extensive
field surveys. Specifically, we intended to answer the
following three questions: (1) How do environmen-
tal conditions and floristic composition of TDFs vary
across six geographic regions? (2) What are the land-
cover status and successional stages of TDFs across
these regions? (3) Which are the main anthropogenic
pressures impacting dry forests? This information will
not only contribute to our understanding of the abi-
otic, biotic and anthropogenic factors that shape dry
forests in Colombia, but can support better founded
conservation and management strategies for this highly
endangered ecosystem.

2. Methods

2.1. Study area

In Colombia, TDFs occur across altitudinal and cli-
matic gradients and in transitions from humid forests
to savannas (Pizano et al 2014). Therefore, we used
the broad definition of TDFs being lowland to mid-
elevation (up to 1200 m.a.s.1.) forests that experience at
least three months of drought (<300 mm total rainfall,
~100 mm-month™!) (Mooney et al 1995). We used
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Figure 1. Current extent and distribution (a), and field sample sites across six regions of TDFs in Colombia (b), as defined by Pizano
etal (2014a).

the 1:100 000 scaled national map of TDFs (Corzo
and Delgado 2012) to randomly select 571 existing
forest fragments (sites) within TDF landscapes in six
geographic regions of Colombia suggested by Pizano
et al (2014a) (figure 1, appendix table Al available at
stacks.iop.org/ERL/13/045007/mmedia). We excluded
areas that appeared as dry forests in the national map,
but were confirmed as not being TDFs by local experts.
The number of sample sites was proportional to the
extent of TDFs for each region, and it was validated by
a field team of botanists, ecologists and spatial analysts.

2.2. Environmental variables

Climatic variables for TDF regions were estimated using
the national climatic model developed by the Instituto
de Hidrologia, Meteorologia y Estudios Ambien-
tales and Instituto Humboldt (IAvH) of Colombia,
based on 2046 weather stations around the coun-
try (monthly data in a resolution of 90m). Selected
climatic variables included mean annual temperature
(MAT °C), total annual precipitation (TAP mm), total
precipitation in the driest period (rainfall <300 mm
in three continuous months (~100 mm-month™!);
TPdriest mm), number of dry seasons for which precip-
itation is < 300 mm (drySeason: 1 or 2 periods-year—!)
and number of dry months for which precipita-
tion is < 100 mm (dryMonths: 1-12 months-year~!)
(appendix table Al). Soil variables included pH
(in H,O), soil organic carbon content (OCarbon
g-kg™!), sand content (% particles > 50-2000 ym),
silt content (% particles 2-50 ym) and clay content

(% particles < 2 ym), bulk density (BulkDens kg-m_3 ),
cation exchange capacity (CEC cmol,-kg™!), and abso-
lute depth to bedrock (Bedrock cm). Soil variables
where obtained from the global soil information sys-
tem (SoilGrids 1-km, Hengl et al 2014) (appendix
table A1).

2.3. Field sampling data

Field sampling was done between August 2013 and
October 2014. Field teams collected the following infor-
mation at each site: geographic coordinates (Lat./Long.
decimal), altitude (m), presence of vascular plant
species, successional stage of forest fragments, and the
anthropogenic pressures present inside the forest frag-
ment as well as in the surrounding matrix. For plant
species data collection, field teams ran a linear tran-
sect inside each forest fragment sampled, in which
plant species were sampled, photographed and iden-
tified by local botanists who also collected reference
specimens. All plants of height > 1.3 m were sampled
including palms, shrubs, lianas and cacti. For plants
with dubious identity, 1-3 specimens were collected for
taxonomic identification (appendix table A2). All spec-
imens were processed in a local herbarium (appendix
table A2) and homologated based on duplicates in the
Federico Medem Herbarium in Bogota using the APG
III classification system (Haston et al 2009).

2.4. Quantifying land-cover metrics
Forest fragment size and shape were quantified based
on dry forest patches interpreted from a Landsat 8
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Mosaic 2014 of TDF distribution published by the
IAvH (15X 15m resolution) and developed follow-
ing global models and protocols for image processing
using remote sensing techniques (Xu and Becker 2012).
Remote sensing resolution was improved using Google
EarthProo images from 2014-2015 (Yu and Gong
2012). Each fragment was mapped by visual interpre-
tation, keeping a fixed digitalization height of 1500 m.
This fixed scale assured fragment size and shape was
correctly compared between and within regions. All 571
sample sites were re-interpreted using this method for
land-cover metric evaluation during the field-sampling
period. 77 sites were excluded from the analyses due to
cloudiness in the images.

2.5. Successional stages and anthropogenic pres-
sures

Botanists classified TDF successional stages in the field
in four categories: no-forest (in some areas forest frag-
ments had a different size or shape to those in the
map due to difference in scale), early, intermediate,
and late, based on the physiognomy and structural data
including visually estimated canopy height and stem
density, and the presence of pioneer and late succes-
sional species (Kalacska et al 2004, Garcia-Millan et
al 2014). Early successional forests were characterized
by low stem density, open vegetation, dominance of
pioneer species, and a canopy height of 10 m. Inter-
mediate forests were defined as more dense vegetation
in which intermediate-successional species were com-
mon, there was a second layer of young trees, a dense
understory, and mature trees up to 15m in height.
Finally, late forests were distinguished by a multi-layer
and heterogeneous canopy of more than 15 m in height
with emergent trees, the presence of late-successional
species, and a more open understory (Kalacska et al
2004, Garcia-Millan et al 2014). At each sample site,
anthropogenic pressures were recorded and catego-
rized according to their impact level from the lowest
to the highest as follows: ecotourism (1), hunting (2),
non-timber forest product extraction (3), selective log-
ging (4), cattle herding inside the forest (5), intensive
logging (6), agriculture (7), cattle ranching (8), human
infrastructure (9), hydrocarbons (10), fire (11), clear-
cut mining (12) and erosion (13). Cattle herding inside
the forest was classified as a different pressure to cattle
ranching because herding means cattle browse in the
understory of TDFs (particularly during the dry sea-
son), while forests are clear-cut for the establishment
of cattle ranches. Categories 1-5 and fire were recorded
based on interviews with local people, while all other
pressures were visually assessed.

2.6. Data analyses

We ran a principal component analysis (PCA) to
analyze environmental heterogeneity of TDFs across
Colombia, reduce climate-soil dimensionality, and
identify the principal axes of variation across regions.
We also used the unweighted pair-group Simpson
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dissimilarity index (Dgjyp0n) to evaluate plant species
turnover across TDF field sites, as other authors have
suggested this is an effective measure of geographi-
cal regionalization (Kreft and Jetz 2010) and floristic
clustering of TDFs at different geographic scales (Dex-
ter et al 2015, DRYFLOR et al 2016). Dgjppon ranges
between 0 and 1, where values close to the unit indi-
cate maximum floristic dissimilarity. We then used the
Dgimpson distance matrix as the basis for ordination of
TDFs in regions using non-metric multidimensional
scaling (NMDS, Borcard et al 2011). To test if TDF
regions had significantly different mean Dg;pncon, We
used the analysis of similarity test (ANOSIM, Clarke
1993). Finally, we computed a redundancy analysis
(RDA, with Hellinger transformation) to address how
differences in species composition may be related to
soil and environmental conditions, for which R* and
adjusted R? were calculated to identify the percentage
of the explained variance (Borcard et al 2011). The
significance of the canonical axes in RDA was tested
by a one-way analysis of variance (ANOVA) following
Legendre et al (2011).

Total fragment size (area in hectares) was estimated
based on land-cover data for each TDF region, as a key
metric for estimating patch occupancy and conserva-
tion status in the landscape (McGarial and Marks 1995,
Hill and Curran 2003). We also used land-cover data
to calculate the shape index as the perimeter/area ratio.
This index is defined as the fragment narrowing shape
by which a theoretical zero value indicates an infinitely
large perimeter around an infinitesimally small area
(Berry 2007, Moser et al 2002). Hence, a lower value in
the index indicates a more irregularly shaped form of
forest fragments resulting from land-cover transforma-
tions. A one-way ANOVA and a post-hoc Tukey test
were performed to compare forest fragment size (area)
and shape index (perimeter/area ratio) across the six
regions. Both metrics were log;,-transformed to fit the
assumption of normality.

Forest successional status relative frequency (%)
was estimated as the sum of sites (s) in which we
reported each successional category (C) divided by
the total number of sites measured for each region

N N

(R) multiplied by 100: F =100x Y. C;/ Y R;, a
descriptive summary of the successiolnall statilslof TDF
fragments in each region. We also estimated the relative
frequency (%) of each anthropogenic pressure inside
forest fragments and in the surrounding matrix across
regions (anthropogenic pressures: 1-13; section 2.3).
To evaluate the impact of pressures and differences
across the six regions, we performed a non-parametric
one-way ANOVA (Kruskal-Wallis; Sokal and Rohlf
1995, McDonald 2014), and a multiple pair compar-
isons test (posthoc.kruskal.nemenyi.test; Dunn 1964,
Pohlert 2016), using the mean ranks of pressures per
region as the level of impact. In both analyses, values
higher than 6.5 indicate a high level of anthropogenic
pressures for a TDF region.

4
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Figure 2. Variation in TDF environmental and soil conditions (a), plant species composition (b), and their correlation (c) across six
TDF regions in Colombia. (a) Ordination space of environmental conditions (PCA, soil-climate variables, N=558); (b) ordination
space of TDF floristic composition (NMDS, N=464) using the Simpson dissimilarity index as distance between pair-sites; and (c)
RDA fitted for the floristic composition and climate-soil conditions (RDA, N=456). Ellipses represent 95% confidence intervals for

All statistical analyses were performed using the
statistical program R (R Development Core Team
2005, version 3.2.2). We used the package ‘vegan’
(Oksanen et al 2007) for estimating the Simpson dis-
similarity index, the NMDS and RDA, and ‘PMCMR’
package for calculating the Posthoc Kruskal-Nemenyi
test (Pohlert 2016). For information on how many for-
est sampling sites were used for each analysis, please see
appendix table A3.

3. Results

TDFs in Colombia occur in areas with high
environmental and soil variation (figure 2(a)),
with a mean annual temperature of 26.5+1.6°C,
mean annual precipitation of 1575.1 +596.9 mm,
and one to two annual dry seasons with a
total precipitation of 115.3+65.4mm (~3 months

continuous < 100 mm-month™!) (appendix table
Al). Soils varied from low fertility (pH <5.5,
CEC=113+4.1cmol_-kg”!), high sand content
(>40%) and low organic carbon content (< 13 g-kg_l ),
to fertile due to high cation exchange capacity
(>20 cmol-kg~!), and higher content of finer textures
(clay content > 30%) and organic matter (>20 g-kg™!)
(appendix table A1).

Dry forest vegetation clustered in six different
groups (p=0.001), with a clear overlap between inter-
Andean valley regions (figure 2(b)). Sites across the six
TDF regions showed high floristic dissimilarity (mean
Dgipmson = 0-89, median Dg;peon =0.92), as 73.3% of
plant species were found only in one region, 13.8% of
species were shared between two regions, and 1.3%-—
4.3% species were found in 3-5 regions (appendix
table A2). In fact, only three species were found in
all six regions (Guazuma ulmifolia, Ceiba pentan-
dra and Ochroma pyramidale, Malvaceae), and the
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most frequently detected species varied in each region
(appendix table A2). Correspondingly, we found a
high floristic dissimilarity within regions, which ranged
from 0.67 in Patia to 0.88 in the North Andean region
in the median of Dgjpmon-

TDFs clustered in three main floristic groups
associated to climate-soil conditions (p=0.001, fig-
ure 2(¢)): (1) the Caribbean, with high soil fertility
(mean pH > 6.3, CEC > 20 cmol_-kg™!), the longest
dry season (5.0 + 1.7 months per dry period, TPdriest
~1-155mm) and high aridity due to high tempera-
tures (MAT=27.3 +0.9 °C) (figure 2(c), appendix table
Al); (2) the Orinoquia, with total annual precipita-
tion above 2367 mm, but dry season (3.9 + 0.8 months)
precipitation of only 40-231 mm, and soils with the
highest sand content (40.4+7.4%) and the lowest

fertility (pH < 5.3, CEC 11.3 +4.1 cmol,kg™!) (fig-
ure 2, appendix table Al), and 3) the inter-Andean
valleys with high soil fertility (CEC > 19.6 cmol,-kg™!,
clay content > 36.5%) and the highest total precipita-
tion during the driest period (45-298 mm), with two
annual dry seasons (figure 2, appendix table A1), and
valleys with different altitudes (Cauca Valley = 375—
1211 m, Magdalena Valley =227-906 m, North Andean
= 188-1154 m and Patia = 555-953 m; figures 2(a)—(c)
and appendix table A1). Environmental and soil factors
explained 13% (R?) and 10% (adjusted R?) of the vari-
ation in species composition (figure 2(c)), with a large
proportion of unexplained variance.

A total of 332342 ha of TDFs were mapped and
validated in the field (494 forest fragments). For-
est fragment size had a median of 115.2ha and a
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perimeter/area ratio index of 0.008 at the national level
(figure 3 (a)). The largest forest fragments where found
in the Caribbean, where fragment size showed high
variation (mean A =1530.4 +2840.4 ha), followed by
the Cauca and Magdalena Valleys, North Andean and
Orinoquia (figure 3(a)). The smallest forest fragments
were found in the Patia Valley, where average frag-
ment size was 56.9 + 63.9 ha (figure 3(a)). In general,
all forest fragments across the six regions had high nar-
rowing values as a result of large perimeters around
low area per patch (median shape index 0.004-0.025,
figure 3(b)). In the Caribbean, although fragments
were the biggest, they also had the highest narrow-
ing, indicating high levels of transformation (median
shape index 0.004, figures 3(a) and (b)). In contrast,
the Patia region had the lowest fragment narrowing
(median shape index 0.023, figures 3(a) and (b)) as
a result of low forest patch size and regularly shaped
fragment shapes. In terms of successional stages, except
for the Orinoquia region, the relative frequency of late
successional forests (mature forests) was lower than
7% for all regions (figure 4). An extreme case was the
Patia region, where no mature forests could be found
(figure 4). Correspondingly, dry forests in all regions
were at either early (~31%-50%) or intermediate suc-
cession (~21%-63%), butin Orinoquia, where no early
successional forests were found, and TDFs were either
intermediate or mature (figure 4).

Anthropogenic pressure mean rank was higher than
6.5 inside the forest (7.2) and in the surrounding matrix
(8.2) across all regions, except inside the forests in
the Caribbean and Orinoquia regions (figure 5). In
order of importance, the most frequent pressures for
all regions inside the forests were: selective logging
(reported presence 175, total represented percentage
=30.6%), herding (160, 28.0%), human infrastructure
(150,26.3%) and hunting (110, 19.3%). In contrast, the
most frequently reported pressures in the surround-
ing matrix were: cattle-ranching (327, 57.3%), human

infrastructure (314, 54.9%), agriculture (148, 25.9%)
and fire (92, 16.1%). The Magdalena Valley, North
Andean and Patia regions were the most threatened by
high-impact levels inside the forest (Mean rank > 8.1,
figure 5(a)), while high impact levels were present in
the surrounding matrix of all regions (Mean rank > 8.2,
figure 5(b)), with the highest in the Patia region.

4, Discussion

4.1. Floristic distinctiveness correlates with environ-
mental heterogeneity of TDFs in Colombia

TDFs are commonly defined as a single biome
characterized by a strong seasonality in precipita-
tion (Pennington et al 2009, Portillo-Quintero and
Sanchez-Azofeifa 2010). However, these forests vary
significantly in rainfall seasonality (Murphy and Lugo
1986, Gentry 1995, Murphy and Lugo 1995, Penning-
ton et al 2009), soil nutrients, soil texture (Pefia-Claros
et al 2012), soil water storage (Neves et al 2015), frost
(Pennington et al 2006) and altitude (Gentry 1995).
Correspondingly, TDF plants have been modeled as
metacommunities historically adapted to dry condi-
tions (Pennington et al2009 ) with high species turnover
and endemism as a result of historical fragmenta-
tion, dispersal limitation (Linares-Palomino et al 2011,
Neves et al 2015) and environmental controls (Neves
et al 2015, Williams et al 2017).

We found that TDFs in Colombia cannot be
defined solely on rainfall parameters such as Total
annual precipitation (as defined in methods) Mean
annual temperature (as defined in methods) TAP
or MAT/TAP ratio (Murphy and Lugo 1986, Gen-
try 1995, Pennington et al 2009). Taken together,
all environmental variables measured across six TDF
regions (appendix table Al) grouped dry forests in
three clusters: the Caribbean, the Orinoquia, and
the inter-Andean valleys (figure 2(a)). The Caribbean
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Figure 5. Frequency of anthropogenic pressures and their impact inside dry forest fragments (a) and in the surrounding matrix () in
six regions of Colombia (N =457). The arrows indicate the level of impact for each pressure from low (ecotourism (Ec), hunting (Hu),
extraction of non-timber forest products (NTFP), selective logging (SL), herding inside the forest (He)) to high (intensive logging (IL),
agriculture (Ag), cattle ranching (CR), human infrastructure (HI), hydrocarbons (Hy), fire (Fi), clear-cut mining (Mi), and erosion
(Er)). Values higher than 6.5 (dashed line) in the plots indicate the presence of a high number of pressures in a given region based on
the mean ranks (Kruskal-Wallis test, H). Different letters indicate statistically significant differences between groups (p < 0.05).

experiences the longest and harshest dry season with
high MAT and low precipitation, similar to TDFs in
Venezuela (Fajardo et al 2005) and Central America
(Murphy and Lugo 1986, Gentry 1995), but contain
mostly fertile soils, as a result of low nutrient leaching
(Fajardo et al 2005). In contrast, the Orinoquia had a
high TAP and low soil fertility as the result of high nutri-
ent leaching (Malagon-Castro 2003) and high sand
content, resulting in low soil water storage during the
dry season (Medina and Silva 1990, Dezzeo et al 2008),
an important determinant of dry forests across the
Neotropics (Dezzeo et al 2008, Pefia-Claros et al 2012,
Neves et al2015). Finally, the inter-Andean valleys had
the highest soil fertility and a high variation in rainfall
during the dry season (appendix table Al), with two
annual dry seasons determined by Colombia’s moun-
tainous geography (Ferndndez-Méndez et al 2014).
In addition to these marked differences in climate

and soils, these three regions differed in altitude
(appendix table A1).

Matching the variation in environmental condi-
tions, we found that 73.3% of TDF plant species
were only found in one region, and that the floristic
composition of dry forests in Colombia is clustered in
the same three groups: the Caribbean and the inter-
Andean valleys (Patia, Cauca and Magdalena Valleys
and North Andean), as suggested by (DRYFLOR et al
2016), and the Orinoquia (p < 0.001), a region where
TDFs have been poorly studied, but has been sug-
gested as a separate floristic entity by Espinal and
Montenegro (1977) and Pizano et al (2014a) (fig-
ures 2(b)—(c)). In fact, environmental and soil factors
explained 13% of the variation in plant species compo-
sition (figure 2(c)). Similar to other dry forests in the
Neotropics, we found high species turnover for both
across and within regions (Linares-Palomino etal2011,
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Neves et al 2015, DRYFLOR et al 2016, Williams
et al 2017), as well as high levels of endemism across
TDF regions. Floristic composition in the Caribbean
appears to be correlated with soils with a high pH and
high bulk density, high mean annual temperature, and
the longest dry season (figure 2(c)). Meanwhile, the
presence of plants in the inter-Andean valleys was cor-
related with soils with high clay and organic carbon
content, two dry seasons, and the highest altitudes
(figure 2(c)). For example, Trichilia carinata and
Trichilia oligofoliolata are restricted to the Magdalena
Valley, although locally abundant (Gonzalez-M et al
2016) (appendix table A2). Finally, dry forests of the
Orinoquia, with the most unique flora, are charac-
terized by sandy soils and the highest precipitation
(figure 2(¢)). This supports the hypothesis that TDFs in
northern South America were isolated from other dry
areas due to geography barriers such as rainy forma-
tions (Amazonia and Choco6), and the Andes (Gentry
1982, Pennington et al 2009). A caveat of our study
is that we only sampled plant species of > 1.3m in
height, therefore excluding species important for dry
forests such as epiphytes and herbs (Linares-Palomino
et al 2009, Pizano et al 2014a). On the other hand,
although the correlation between environmental and
soil conditions and floristic distinctiveness was clear,
we failed to explained a large fraction (87%) of the
variation in dry forest species composition (figure
2(c)). However, as reported before, given the many
factors that determine plant species composition, this
is a usual result of studies on floristic composi-
tion over similar spatial scales with species presence-
absence data (Guisan et al 1999, Neves et al 2015).

We also found that the most widespread dry for-
est species were generalists that are favored by forest
disturbance and early successional stages (appendix
table A2), as reported by previous studies (Uribe et al
2001, Lopez-Camacho et al 2012, Castellanos-Castro
and Newton 2015, Williams et al 2017) for other
TDFs (Newbold et al 2014), indicating the incipi-
ent successional status of dry forests at the regional
level (Derroire et al 2016). Furthermore, we found
an introduced invasive species (V. farnesiana) among
the most common species of TDFs throughout the
country, suggesting that TDFs are also highly suscep-
tible to invasion (Pizano et al 2014a). This shows the
importance of taking into account human land-cover
disturbances as determinants of floristic composi-
tion and species turnover of TDFs (Larkin et al
2012).

4.2. Successional status and current threats of TDFs
in Colombia

Previous studies using remotely sensed data have shown
that TDFs are highly fragmented in the Neotrop-
ics (Fajardo et al 2005, Miles et al 2006, Rodriguez
et al 2008, Portillo-Quintero and Sanchez-Azofeifa
2010). However, field-collected information on for-
est fragment shape and size, successional stage, species
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composition and forest conservation status, is rare.
Anthropogenic pressures in TDFs vary from hunt-
ing, selective logging and local clearing with fire (for
agriculture and cattle ranching) to complete defor-
estation and soil desertification (Janzen 1988, 1988a,
Garcia et al 2014), but are still fairly unexplored in
the Neotropics. In particular, methods such as satellite
image analysis are unable to detect subtle changes in
the forest due to hunting, non-timber forest harvest-
ing, selective logging, invasion of exotic species and
understory thinning due to cattle herding (Peres et al
2006).

In an extensive and unique field survey at the
national level, we found that TDFs in Colombia are
highly fragmented, narrowly shaped, and comprise
mostly early and intermediate successional stages, with
very little mature forest (figures 3 and 4). At the national
level, dry forest comprises very small and highly irreg-
ularly shaped forest fragments, with larger remnants
only found in the Caribbean and the Magdalena Val-
ley (figure 3). Furthermore, of the 332 342 ha of TDFs
mapped across six regions, between 31%-50% of the
fragments contained early, ~21%—63% intermediate,
and less than 7% mature forest (except for Orinoquia)
(figure 4).

On the other hand, high-impact disturbances such
as human infrastructure and hunting were com-
mon inside dry forest fragments in all regions but
Orinoquia, where lower-impact disturbances (cattle
herding, hunting, non-timber forest product extrac-
tion, and ecotourism) were more important (figure
5(a)). Similarly, pressures in the surrounding matrix
included higher-impact disturbances such as cattle
ranching, human infrastructure, agriculture and fire in
all regions (figure 5(b)). Orinoquia, an extensive area
(285440 km?), had the least pressures inside the for-
est (figure 5(a)), and was the only region where
mature TDFs still exist (figure 4). However, this is the
new agricultural frontier as declared by the Colom-
bian government, and therefore presented high-impact
anthropogenic pressures in the surrounding matrix.
Thus, in contrast to a tendency towards conserva-
tion, deforestation and degradation of TDFs, at the
national level will probably tend to increase as a result
of high-impact pressures detected in all regions. In par-
ticular, previous studies have shown that both high-
and low-impact pressures may further degrade TDFs.
For example, in the dry forests of Sonebhadra (India),
an increase in human population led to increased
illegal tree felling, extraction of non-timber resources
and cattle herding, which led to significant declines in
52% of the population of all 65 forest plant species
(Sagar and Singh 2004). Furthermore, degradation of
TDFs may substantially increase carbon emissions,
negatively impacting payment schemes such as the
‘Reduced Emissions from Forest Deforestation and
Degradation’ (REDD), one of the most advocated con-
servation strategies for TDFs (Portillo-Quintero et al
2015). However, more extensive field work and satellite
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and remote sensing methods (Peres et al 2006, Garcia-
Millan et al 2014, Li et al 2017), as well as studies on
the response of species to disturbance (Newbold et al
2014), need to be done to better estimate the extent and
impact of anthropogenic pressures on TDFs.

5. Conclusions

Although considered a biome, TDFs have been shown
to differ both environmentally and floristically at the
regional scale (Murphy and Lugo 1986, Gentry 1995,
Murphy and Lugo 1995, Pennington et al 2006, Pen-
nington et al 2009, Pefia-Claros et al 2012, Neves
et al 2015). In this extensive field survey in Colombia,
we found that both environmental and floristic char-
acteristics of TDFs varied significantly across regions,
and grouped dry forests in three separate entities: the
Caribbean, the inter-Andean valleys, and the Orino-
quia region. In fact, we found a high species turnover
across and within regions (Linares-Palomino et al
2011, Neves et al 2015, DRYFLOR et al 2016), and
high levels of regional endemism. At the same time, the
most common dry forest tree species were generalists
that are favored by forest disturbance and are common
in early successional stages. Thus, disturbance is a key
determinant of plant community composition in the
dry forests of Colombia.

In addition to differences in environmental condi-
tions and plant species across dry forest regions, our
broad field study allowed us to verify that TDFs are
highly fragmented, consisting of irregularly shaped for-
est fragments, and of mostly early and intermediate
successional forests across the national level (Portillo-
Quintero and Sanchez-Azofeifa 2010). Furthermore,
anthropogenic pressures inside forest fragments and
in the surrounding matrix were equally high across
all regions of dry forest, with high-impact disturbance
such as human infrastructure, fire, cattle ranching
and agricultural plantations dominating TDFs across
the country. Thus, the protection of TDF should be
a priority in Colombia, where environmental, biotic,
successional, and human dimensions need to be con-
sidered for assuring more effective management and
conservation strategies of these unique forests.
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